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PREFACE.

The Council of tlio Institute op Actuaries, while

recognizing the skill with which the first Text-Book,

Part I,, on Interest, had been written, felt that ip some

'^ ways it might be made more suitable for the students

^ for whom it was intended. When, therefore, a new

^ « edition was needed, they laid the matter before

<^ Mr. ToDHDNTER, requesting him to consider it from this

^ ..... .

i point of view, giving him full liberty to act as ho might

' think best. He found it desirable to rc-write the volume,

and has accordingly done so.

J

J It is hoped that the following pages, including in

) due proportion theoretical explanation and practical

example, will prove increasingly useful to all whose duty

or pleasure it may bo to n^pp'y themselves to this

important subject, and that Mr. Todhunter's ability and

care will (larn the gratitude which they surely merit.

C. D. H.
24 June 1901.





INTRODUCTION BY THE AUTHOR.

In the preparation of a New Edition of the Text-Book^

Part I., it has been found necessary to re-write the

work. The general Theory of Compound Interest has

been presented in a form which will, it is hoped, afford

a comprehensive view of the subject, and special

attention has been given to the applications of the

Theory to practical financial problems. For the

convenience of those students who have no previous

knowledge of the methods of the Infinitesimal Calculus,

a chapter on the elements of this subject has been

included.

In the compilation of the volume assistance has been

derived from numerous papers and notes in the Jour7ial,

and from various treatises on Compound Interest—more

especially from Mr. George King's Theory of Finance,

to which no subsequent writer could fail to be greatly

indebted—but, in accordance with precedent, references

to authorities have not been given.

The author takes this opportunity of acknowledging

his indebtedness to the Council of the Institute for the

critical examination which they have given to the work
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during its progress, while according liim entire liberty

in the treatment of the subject. He also offers his best

thanks to Mr. J. E. Faulks, B.A., for many valuable

suggestions, and to Mr. A. Levine, M.A., for assistance

in the revision of the earlier proof-sheets of the two

concluding chapters and other parts of the work.

R. T.

Loudon, I'l June IDOL

The necessity for another edition having arisen, the book

has been revised by the author in consultation with

Mr. W. Palin Elderton and Mr. H. M. Teodnceb, M.A.,

to whom the author is much indebted.

R. T.

London. July 1915.
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INSTITUTE OF ACTUARIES' TEXT-BOOR.

PAllT I.

THE THEORY OF COMPOUiXD INTEREST AND

ANNUITIES-CERTAIN.

CHAPTER I.

Definitioxs and Elementaet Peopositions.

1. Interest may be defined as the consideration for the use of

capital, or as that .wJiicix is earned by the productive investment of

capital. In theory, it is not necessary that the invested capital and the

consideration for the use of it should be expressed in terms of one or

the same commodity, but in practice it is usual and convenient to

express both in terms of some one unit; in the investigations that follow,

it will be assumed that both are expressed in terms of a unit of money,

without specification of the particular currency to which that unit

belongs.

2. The invested_capital is called the Peincipal. The consideration

for the M'ie of capital usually becomes due at stated intervals, and, being

itself of the same nature as capital, may be employed, when received, as

capital, in the Theory of Compound Interest, it is assumed that the

consideration will not be allowed to remain idle, but will immediately be

productively invested.
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3. The total interest earned on a given principal in a given time will

obviously depend on (1) tlie given principal, (2) the interest contracted

to be paid for eacli stated interval in respect of eacb unit of jirincipal,

(3) tlie given time. The second of these quantities is, in the strictest

sense, the Kate or Inteuest, and in some investigations it will be

Ibund convenient to take this quantity—the interest contracted to be

paid in respect of each unit of principal for each stated interval—and

the numl)er of such intervals in the given time as data. The

expression " the rate of interest " is, however, more generally used

with reference to a yeai\ the accepted unit of time in the Theory of

Finance, and it is so uced to denote:

—

(1) the rate per unit per annum at which interest is calculated

for each stated interval for which interest is contracted to be

paid, or, in other words, the interest that would be earned

on each unit of principal in a year if the interest received at

the end of each stated interval were not itself productively

invested

;

(2) the total interest earned on each unit of principal in a year

on the assumption that the actual interest as received at the

end of each stated interval is invested on the same terms as

the original principal.

4. It is obvious that, except in the case when the stated interval for

which interest is to be paid is a year, these two senses in which the

expression "the rate of interest" is emplo^-ed represent two different

things. To take a simple example, let it be supposed that a principal of

100 is invested in consideration of the payment of 2^- at the end of each

half-year. In this case the rate per unit ^jer annum at which interest is

calculated, or the interest that would be earned in a year on each unit of

principal if the interest received at the end of the first half-j'^ear were

not productively invested, is '05, whereas the total interest earned on each

unit of principal in a year on the assumption that the 2| received at the

end of the first half-year is invested on the same terms as the original

principal (e.g., in consideration of the payment of 2-0- per-cent on the

2-2-, or •0G25, at the end of each half-j'car) is •050G25. It is convenient,

therefore, to distinguish between the two senses in wdiich the expression

" rate of interest" is employed by the use of distinct expressions and

distinct symbols.

5. The rate per unit per annum at which the actual interest for each
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stated interval is calculated when iliat interval differs from a year, or, in

other words, the interest that would be earned on each unit of principal

in a year if the interest as received were not productively invested, is

called the Nominal Rate of Interest, and will be distinguished by

the symbol y. The frequency with which interest is actually payable, or

the stated interval of payment, is dclined by the expressions " payable

half-yearly, quarterly, or vi times a year " (as the case may be),

" coiivertil)le half-yearlv, (piarterly, monthly, &c.", or "with half-

yearly, quarterly, monthl}-, ttc, rests." Thus, when interest is

••said to be at the nominal rate of 5 per-cent per annum payable

(or convertible) half-yearly, or at the nominal rate of 5 per-cent

per annum with half-yearly rests, it is meant that 2^ is to be paid at

the end of each half year for each 100 owing at the beginning of the

I)alf year. The frequency of conversion of a given nominal rate may be

denoted by means of a suffix placed in brackets at tlie lower right-hand

corner of the symbol representing the rate. Thus j»',„,, denotes a nominal

rate ;' convertible m times a year.

6. The total interest earned on 1 in a year, on the assumption tliat

the actual interest (if receivable otherwise than yearly) is immediately

invested as it becomes due, on the same terms as the original principalis

called the Effective Hate of Inxekest, and will be distinguished by

the symbol i.

7. To every nominal rate of interest, convertible with a given

frequency, there is a corrcspondinq effective rate, for the total interest

earned on each unit of principal in a year—in other words, the effective

rate of interest—may be found by accumulating a unit, on the assumption

of compound interest, at the given nominal rate. Thus, if the nominal

rate be j, convertible m times a year, an original unit of principal,

together with the interest upon it at the end of the first — th of a year,

/ • 1 •

will amount to IH • By assumption the — is immediatelv invested
m m

on the same terms as the original unit of principal, so that the interest

due at the end of the second — th of a rear will be —
| 1-f — )

; hencem " m \ lit. J

the original unit with interest will amount to 1 -1- — + - 1 1 -j- —
) or

m m V inJ

Similarlv, in each - - th of a year the amount of the original0-i)-
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unit with interest at the beginning of the interval will be increased in

j
the ratio of 1+ — to 1. Consequently, at the end of a year, the unit of

principal with interest will amount to I 1 H j . The total interest

earned on each unit of principal in the year is, therefore,
[ 1+ =^

]
— 1.

In symbols,

'=(! +
,t;)'"-!

«

whence /=ot|(1 + /)''-i| (2)

and c«log(l+'£)= ]og(l + .... (3)

8. From these equations the effective rate of interest corresponding-

to a given nominal rate convertible with a given frequency, or^

conversely, the nominal rate convertible with any required frequency

corresponding to a given effective rate, may be calculated.

9. It will be observed that if two of the three quantities j, m and f

are given, the equation gives a single value for the third quantity; that

is to say, to a given nominal rate convertible Avith a given frequency

there is one, and only one, corresponding effective rate; to a given

effective rate, there is one, and only one, corresponding nominal rate-

convertible with a given frequency; and, finally, there is one, and onlj'

one, frequency for which a given nominal rate and a given effective rate

will correspond.

10. But if only one of the three quantities is given, any nvmiber of

corresponding values may be found for either of the remaining two by

assigning successive values to the other.

Thus, if j be given, any number oi corresponding values of i may be

found by giving successive values to w. As m increases from 1 to od
,

f j\^ ...
the -"alue of (1+— —1 increases from j to eO— \. Hence the

V inJ

effective rate corresponding to a given nominal rate increases as the-

frequency of conversion of the latter is increased. For example, a

nominal rate of 5 per-cent per annum convertible quarterly gives a

higher effective rate than the same nominal rate convertible half-yearly.

Again, if i be given, any number of corresponding values of ^ may be
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found by giving successive values to m. As m increases from 1 to oo

,

neethe value of m - (1 + /)"'— ! v decreases from i to ]oge(l + i). He

the nominal rate corresponding to a given effective rate decreases as the

frequency of conversion is increased. For example, the nominal rate

convertible lialf-yearly corresponding to an effective rate of 5 per-cent

exceeds the nominal rate convertible qiiarterlij corresponding to the same

effective rate. It will be noticed, however, that the nominal rate

corresponding to the effective rate i does not decrease indefinitely as

in is increased, but gradually approaches the value loge(l4-*), this being

tlie limiting value of in-\ (1 + ?)"'— 1 -, when m is made infinitely large.

This limiting value is called the Force of I>'terest corresponding to

the effective rate i^ and is distinguished by the special symbol S.

11. The force of interest corresponding to a given effective rate i may
therefore be defined as the nominal rate convertible at infinitely short

intervals corresponding to that effective rate.

12. From the foregoing it will be seen that the basis upon which

interest is to be calculated in any given case may be defined by means of

an effective rate of interest, i; a nominal rate of interest,j, convertible

with a given freciuency, on; or, finally, ^ force of interest, 8; and that

when anyone of these three quantities is given the corresponding valves

of the other two may be determined by the equations

1 + ^"= (l^lT=e^ (4)
\ my

13. To proceed to the general theory of the accumulation of principal

under the operation of compound interest.

Let P be a given principal, S the sum to which it will amount if

accumulated at compound interest for n years, and I the total interest

-earned on P in the given period. Let i be the effective rate of interest

at which the given principal is to be accumulated, j the corresponding

nominal rate of interest convertible m times a year, and S the

corresponding force of interest. Then by reasoning precisely similar to

that by which it was shown that a unit accumulated for a year at

compound interest at the nominal rate j convertible m times a year will

amount to
f 1+ —

) , it follows that
V mJ

^= V{l + i)n= v(l+-£\"'' = Ve^'^ .... (5)
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This system of equations afFords the means of calculating the amount,

iu a given numher of years, of a given principal at any given rate

of interest—effective or nominal—provided only that rate continues

uniformly in operation throughout the entire period. The appropriatt^

formula to employ in any given case will be

or S= Pe"«

according as the given rate is an effective rate, a nominal rate, or »

force of interest. It would, of course, he practicable to obtain the'

amount of a given principal at a given nominal rate or force of interest,

by first finding the effective rate corresponding to the given rate, and

then employing the formula S= P(l + e)", but in general it will be-

found more convenient to use the directly appropriate formula.

14. It should be noted that tables giving the amount of 1 in any

number of years (within the limits of the tables), at various effective

rates of interest, may often be employed for the purpose of calculating

the amount of a given principal at a given nominal rate. For example^

let it be required to find the amount of 100 in 20 years at 6 per-cent

convertible half-yearly. By the appropriate formula the amount

= 100(1'03)^", which also represents the amount of 100 in AO years

at 3 per-cent effective. Hence the required result will be obtained by

taking 100 times the tabulated value of the amount of 1 in AO years

at 3 per-cent per annum. In fact, a table of amounts may be regarded

more generally as a table of (l + a-)", and used for any purpose for

which the value of this function is required.

15. In the derivation of formula (5), it has been implicitly assumed

that n is integral. In order to extend the formula to cases in which n

is not an integer, it is necessary to adopt some convention as to the

interest to be assumed for a fractional part of a year. When the given

rate is an effective rate, or when it is a nominal rate and the fractional

part of a year does not contain an integral number of the intervals of

conversion, it is permissible to adopt any convention that may appear

suitable, for the stated conditions do not prescribe any rule. When,.

however, the given rate is a nominal rate—say, ;' convertible m times

a year—and the given period of accumulation contains an exact number
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of the intervals of conversion, being, say, n-\ years, a given principal

P will amount to P(l+ -J , and this quantity, by algebraical

I

substitution, =P(l^-^)"+'», where i is the effective rate corre-

sponding to J. It a]ipears, therefore, in this case, tliat the interest on 1

t . . 1
at the effective rate ^ for — of a vear is (1 + ?)'"— 1. This resultm
suggests the usual and convenient assumption that th%,interest on 1 for

any fractional part, say - , of a year at the effective rate i, may be taken as

(1 + ?);)— 1, and the adoption of this convention leads to the

generalization that

S= P(1 + /)« = P(1+^ =Pe«s

for all values of n, integral or fractional. Similarly, the total interest

earned on P will be given, in all cases, by the formula

I=S-P=P[(l + 0"-l]= I'r(l+-)""*-l~l =P[e"«-l].

16. The foregoing articles deal with the accumulation of

principal under the operation of compound interest. It is now

necessary to consider the converse process of discovnting. The general

theory of compound discount may be developed on precisely the same

lines as the theory of compound interest.

17. Discount may be defined as the consideration for the immediate

payment of a sum due at a future date, and the total discount to be

allowed for the present payment of a given sum due may be determined

by reference to an effective rate of discount per annum, a nominal rate

of discount per annum convertible with a given frequency, or a

force of discount, the last-mentioned quantity being, in other words, a

nominal rate of discount convertible at infinitely short intervals.

18. The sum due, less the total discount upon it, is called its

PiiESENT Value.

19. As there is an effective rate of interest corresponding to any

given nominal rate of interest, so also there is an effective rate of

discount corresponding to a given nominal rate of discount. For, if

the nominal rate of discount be y per annum convertible m times a
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vear, tLe present value of 1 due — th of a ^'car hence, will bem
f . .

1 . Similarlv, for eacti interval of conversion the sum due will bem
f

decreased in the ratio of ]. to 1— — . The present value of 1 due a
m

year hence will, therefore, be (1— —
)

. Hence the total discount

on 1 for the year, or, in other words, the effective rate of discount

corresponding to the nominal rate/", will be 1— (1— — 1 . If the

effective rate of discount be represented by d,

whence /=wi-j 1- (l-^/)''' - (G)

20. From these relations the effective rate of discount corresponding

to a given nominal rate, or, conversely, the nominal rate convertible

yith any required frequency corresponding to a given effective rate,

may be calculated just as in the case of the similar relations between

the corresponding effective and nominal rates of interest.

As the frequency of conversion is increased, the nominal rate

corresponding to a given effective rate increases. In the limiting case,

when m is made infinitely large, y becomes, by definition, the force

of discount corresponding to the effective rate d. Let this limiting

value of y be denoted by S'. Then

a'=Limit"'=°°?«|l-(l-rf)'"|= -loge(l-(f) . . (7)

21. To proceed to the general problem of finding the present value

of a sum due w years hence.

Let S' be the sum due, P' its present value, and D the total discount

on S'. Let d be the effective rate at which the given sum due is to

be discounted, /" the corresponding nominal rate of discount convertible

m times a year, and 8' the corresponding force of discount. Then,

by reasoning precisely similar to that by which it was shown that

the present value of 1 due a year hence at the nominal rate J" is

A— -j , it follows that
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P'=s'(i-'0"=^'(i--) =s'e-«s'
. . . (S)

tC f\'""'ll-M-'H =S'(l-e-"«).

22. Tliese formulas may be extended, in precisely the same way as

tlie corresponding compound interest formulas, to cases in wbicli ii is not

integral. The discount on 1 for -th of a year may be taken as

1

l— (l — (I)p, and tlie formulas will then bold good for all values of n,

integral or fractional.

23. So far, tbe operations of accumulating and discounting bave been

considered separately, and two independent systems of equations bave been

established. It is obvious, however, that tbe two processes, although

admitting of independent theoretical development, will not be independent

in practice, for the operation of discounting, from the point of view of

the investor, differs in no essential respect from that of investing capital

to accumulate at compound interest. It becomes Important, therefore,

to investigate the relations between the rates of interest and discount,

and between the general formulas of compound interest and compound

discount in the case when the rate of discount is such that the present

value of a sum due n years hence is that sum which will amount in

n 3-ears, under the operation of compound interest, to the given sum due.

Under these conditions, if S be the amount of P in n years at the

•cifective rate of interest ^, or at the corresponding nominal rate of

interest j convertible m times a year, or at the corresponding force of

interest 8, then will P be the present value of S at the eifective rate of

discount d, or at the corresponding nominal rate of discount/" convertible

m times a year, or at the corresponding force of discount 8', But by

formula (5)

S= P(l + /)» = P('l+ •^Y"" =IV"S

and by formula (S), if S and P be substituted for S' and P'

Therefore

a+o = (i+0"=«'=(i-'/)-'=(i-£)""=«=- (9)
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The assumption bv wliich these results have been obtained—the

assumption, namely, that the present value of a given sum due will, if

accumulated at compound interest, amount to that sum—is implicitly

made in all compound interest problems. In any given investigation^

therefore, where a single uniform rate of interest is employed,

formulas (9) will hold good.

24. Instead of heing independently developed, the theory of

compound discount may be regarded as a necessary deduction from that

of compouud interest. From this point of view, the present value, at

a given effective rate of interest, of a given sum due, is defined to be

that sum which, if accumulated at the given rate of interest, Avill

amount to the given sum ; and the effective rate of discount corre-

sponding to a given effective rate of interest is defined to be the

difference between a unit and the present value, at the given rate of

interest, of a unit due a year hence. From these definitions, since 1 is

the present value of l + ^, and consequently . is the present value
J. "T i

of 1, it follows that l— d=- . , from- which formula (0) may be-

immediately deduced.

25. In practice it is customary to regard the operation of discounting

from the point of view adopted in the last paragraph, and to s])eak of

discounting a given sum, or finding its present value, at a given rate of

interest—that is, at the rate of discount corresponding to that rate of

interest. Financial transactions are usually based upon a given rate of

interest, and the corresponding rate of discount—if requii-ed—is deduced

from the given rate of interest by means of formula (9). An
exception to this rule occurs in the case of bill-discounting, which is

invariably based upon a rate of discount. In particular, what is termed

" Bank rate" is the rate of discovmt charged by the Bank of England

for discounting first-class bills. In employing an agreed rate of

discount—y, say—to discount a bill due - th of a year hence the usua)

commercial practice is to treat the rate as a nominal rate of discount

convertible n times a year, and consequently to charge discount

f
amounting to - for each unit of the amount of the bill, so that the

n

effective rate of discount in respect of the transaction is 1— [1~ -J
-

As n is increased, the value of this expression diminishes. It appears.
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therefore, that, in disconntiiig bills at the uniform rate,/*, the banker or

bill-discounter, by following commercial usage, realizes a slightly higher

effective rate on the longer bills than on the shorter ones, and that,

inasmuch as practically all trade bills are drawn for periods of less than

a year, he will realize all round a slightly lower etlective rate than the

rate y* at which discount is calculated. The diti'ereuce is, of course, so

small as to be of no practical importance.

26. By obvious deductions from formula (9) it will be seen that,

if i and d are corresponding effective rates of interest and discount,

j and f the corresponding nominal rates of interest and discount

convertible m times a year, and 8 and 8' the corresponding forces of

interest and discount, then

i— d^id

and 8 = S'.

The last equation establishes the important proposition that the

forces of interest and discount corresponding to the same effective rate

of interest are equal, and the two preceding equations suggest a verbal

explanation of this fact. The difference between the effective rate of

interest i and the corresponding efTective rate of discount d is equal to

a year's interest on d, for d is equivalent to a year's interest on the

present value of 1 due a year hence, that is on 1— d, whereas i is a

/ /
year's interest on 1. Similarly, since -- and —

^ may be regarded as
m VI

corresponding effective rates of interest and discount for the interval

1
* /* 1 /*

of —th of a year, — exceeds — by the interest for —th of a vear on —

,

on m m m "
vi

j f j f jf
that is, '^ = *^ . -

, or j— f=z'-^. Now, when vi is increased
in VI 111 111 1)1

indefinitely, j and /" become respectively, by definition, the force of

interest and the force of discount, and -- vanishes. Consequentlv,
m

the force of interest = the force of discount.

27. The question may also be considered from a slightly different

point of view. If a sum P increases in — th of a year to S under the

operation of interest, the nominal rate of interest per annum may be

found by taking the ratio of S— P to P and multiplying by m, while
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tlie corrospondins:: nominal rate of discount will be found by taking

the vatic of S— P to S and multiplying by m—the numerator being the

same in both cases, but the denominator being the present value in

one case and the amount in the other. Xow when the interval is

indetinitely diminished the present value and the amount differ by an

indetinitelv small quantity, so that the two operations give identical

results. But in this case the nominal rates of interest and discount

become the forces of interest and discount. Consequently, as before,

the force of interest= the force of discount.

In future, the one symbol S will be used for both the force of

interest and the force of" discount.

28. For convenience, the quantity . or (l + «)-i—the present

value at the elleetive rate i of 1 due a year hence—is frequently denoted

by the symbol v. Thus the present value, at the effective rate i, of S

due n years hence, may be written either as S(l^-^)~'* or So"'.

29. Since l— d = . it follows that
1 + i

d = . or t'v.

1 + i

This relation, which will be found useful in many investigations,

expresses the fact that the discount at the effective rate of interest i on

1 due a 3'ear hence is equal to the present value of a year's interest

on 1, or, conversely, that the interest on 1 if paid at the beginning

instead of the end of the year would be d.

30. By reference to equation (9) it will be seen that any one of

the quantities ^, d, j, f, 8, and v may be expressed in terms of any-

other.

For example,

^•=(l-f/)-^-l= c/ + J2^i3^- ...

So J3

=3.3-1=8+^+-+...

d=l-{l-^i)-^= i-i'-^P- . . .

8=log e(l + /) = «—

-
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31. As /, il and 8 are always, in practice, small quantities, the

successive terms in the series given above diminish rapidly. These

series atibrd, therefore, the means, when the numerical value of any one

of the functions in question is given, of calculating the values of the

others with any desired degree of accuracy. Consider, for example, the

expansion of 8 in terms of i :
—

In this series the terms are alternatively positive and negative, and each

is less than the preceding one. Hence, any given term taken positively

is numerically greater than the sum of all the subsequent terms.

Consequently, the error resulting from the neglect of all terms after^

In+l
sav, the ;ith, is less than • To take an actual example, let

« +

1

i=:-Oi. Then, since LI' = .0000000201.8, the error in taking

^, -0016 -000064. -00000256 ^^^^^^^^ .„
8 as =-04 -— +

, or -03922069, will not affect
2 3 4

the seventh place in the result.

Good approximations, either for use in algebraical analysis or for

practical purposes—when an isolated value is required and great accuracy

is not necessary—may also be obtained by neglecting all terms after the

second. Thus

i=Z-\- -8- approximately

d=-h— ~ 8-

Also, by addition of the first and second of these approxmiate relations,

h=\{i+ d)

/^3 go \

a formula which differs from the true value of 8 h\ onlv (
^ H 1- . . . I

'^ V3 ! 5

!

J

in excess, and gives a result correct to at least four pla?es of decimals

for all values of i not greater than -07. For many practical purposes,

however, sufficiently accurate x'esults may be most conveniently
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obtained by ordinary arithmetic or by logarithms. Thus, if / be

given as "05, the value of v will be best found by taking the reciprocal

of 1'05, and that of the corresponding nominal rate of interest

convertible quarterly by means of the relation log
(
1+ - )

= jlog 1"05.

la the latter cjse it would he necessary to use a six or feven-figute

logarithm table, as the first significant figure in log
(
1 + '-

)
will be

the third.

To take another example, the value of 8 corresponding to a given

value of J, and the value of j corresponding to a given value of 8,

ould be respectively obtained by means of the relations 8=: ;«log f 1 + '—
)

-=-locr e and log f 1+ —
)= - x loo- e

It has been stated in Article 5 ihat
_y',„ii denotes a nominal rate^

convertible m times a year. It is, however, convenient to use thn

symbol in the restricted sense of the nominal rate con\ertible m times a

year corresponding to the effective rate i, or as an abbreviation for

m[(1 + ?') "' — 1], and it will in future be so used in this book. A
nominal rate, when used without direct reference to the effective late to

which it corre.^ponds, will be denoted as before by the symbol 7' without

a suffix.

On page 221 will be found a table giving the values of d, i?, Jia) » ^(4) j 8

and log io(l + corresponding to various elfective rates from '01 to "05.

32. To summarize the principal results established in this chapter

—

I. At Compound Interest. If i be an effective rate of

interest, _y,„i,
the corresponding nominal rate payable m times

a year, 8 the corresponding force of interest, and S the

amount of P in n years :

/ / \ '" "•

S=P(1 + 0"= Pi 1 + -""-
, = Pc««

V '/« J

v m J

2 3

8=iog,(i+o='«iog (i+'^^;;")
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II. At Compound Discount. If (/ bo an elfoctive rate of

discouut, f the coiTesponding nominal rate convertilJe

m times a year, S' the corresponding- force of discount, and

P' the present vahie of S' due at the end of n j'ears

;

/ f\mn

S':=~log,(l-rO = -'»log/l~
^)

III. In any given ])rohleni, when the rates cf intere!^t and

discount recessarily correspond,

S=P(1 + /) =Pfl-f^-
III

-n / f\-mi>

P=sri + /) ",orSt'", =8^1+-^

and the Force of lnterest=the Force of JJiSLOunt.

33. It has been assumed in this chapter that the rate of interest,

whether effective or nominal, employed in any given investigation

remains unchanged throughout. Most financial calculations are based

upon a single uniform rate of interest, but inasmuch as the rate of

interest actually realisable upon investments is subject to considerable

variations, it is of some importance to investigate formulas applicable

to cases in which a varvina- rate is assumed. In general, it"' I' be
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accumulated for n years at compound interest, the effective rate being

ii for the first year, /o for the second year, and so on up to in for the

nth year, the amount of P in n years will be

P(l + eO(l + /,)a + ^3) . . . (l + in).

Thus the amount of 1 in 40 years at an effective rate of 3 per-cent for

the first 20 years, 2| per-cent for the next 10 years, and 2 per-cent

for the last 10 years, will be (l-03)'^''(l-025)'"(l-02)'».

In order to develop the theory of compound interest at a varying

rate, it would be necessary to assume some relation between ii, i.,, &c.

It might be assumed, for example, that «i, i^, &c., decrease in such a way

tliat l + /i, 1 + 1-2, &c., form a Geometric Progression with the common

ratio 1— /t;, where k is a positive quantity small relatively to /j. Then

l+ i2=(l— k)(l + ii) ; 1 + ?3=(1— A;)2(l+ zi) ; &c., and the expression

for the amount of 1 in n years becomes (1— 7i--)'+2+ •
• • +«-i x (l-t-?i)",

or (1— ^0 - (l- + 2i)'*- If ^1 ^e taken as -04, and /.: as -0005, the

successive yearly rates during a period of 20 years will be '04, 'OSOIS,

•03896, . . . '03016 (approximately), and the amount of 1 in 20 years

will be -90935 X 2-1911, which =1-9925. It will be noticed that a rate

decreasing in this particular way gives the same amount for a term of
n-l

n years as a uniform effective rate of (1— A:) - (l + /i) — 1.

The mode of decrease assumed in the last paragraph is practically

limited in applicability to a term of years not exceedinar 1

—

,
°

,,
-—

^^ -^ '' * log(l— ^)
*

for after that term the rate of interest (1— y?;)"~'(l + /i) — 1 would

become negative. An alternative assumption, which gives a positive

value to in for any value of n, however large, and might, therefore, be

regarded as holding good in perpetuity, would be that the effective rates

for successive years form a decreasing Geometric Progression, so that the

amount of 1 in n years = (1 + ?",) (l4-X;/i) . . . (l + /i;"~'/i), where Ic is

< 1. If this expression be denoted by S« , then

log,S,^=log.(l^-^J)+Iog,(l + /t/0+ ••• +log,(l + /.-«-'/i)

_ \-]cn
_ 1_F» i\

Y— k \~k- 2
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Suppose that Z;= -9Sr>, and that /,= -0t as hefore. Tlicn the successive

yearly rates for the llrst 20 years will be "04, -03^0, 03881, . . . '03001,

and, since for this value of k the terms in the above series decrease

rapidly, the terms after the second may be neglected, whence, approxi-

mately, log eS,o=-69564-01219=-68345, and Soo=l-9807, which differs

by only OUUo I'rom the correct value.

Since each term in the senes -

—

-jii—z 7-/ ~ \- ... is less than the
1— k 1— a; ' 2

preceding term, and the terni& are alternatively positive and negative, it

follows that the amount of 1 at the decreasing rate assumed in the last

paragraph has a finite limit when n becomes intJnite. The assumption of

a decreasing rate such that the amount of 1 has a finite limit has some-

times been advocated as a necessary basis of the Theory of Compound

Interest in view of the impossible results given by the ordinary

assumption of a uniform rate when applied to the accumulation of even

a small principal for a very long period. For the periods, however, over

which financial transactions usually extend, the assumption of a uniform

rate is legitimate and in accordance with practice. The practical

inference to be drawn from the theoretical difficulty as to the accumula-

tion of capital for very long periods appears to be that in transactions

involving accumulation the uniform rate assumed for comparatively long

periods should be lower than that assumed for short periods.
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CHAPTER II.

On the Solution of Pr(1ble^i3 in Compound Interest.

Practical Examples. Equation of Payments.

1. Problems in Compound Interest may be broadly classified into

(I) those in which it is required to determine the present value of some

series of payments, or the terms of a given transaction, in order that a

specified rate of interest may be realized; (2) those in which, the

pi-esent value of a given series of payments or the terms of a given

transaction being stated, it is required to find the rate of interest

involved. In the subsequent chapters of this work certain problems of

both these classes, with various questions arising out of them, will be

specially investigated, but it may he useful to point out at this early

stage that the solution of all such problems calls for nothing more than

a correct application of the ^irinciples and formulas established in the

preceding chapter.

2. Thus, the valuation of redeemable securities constitutes a large

<;lass of problems which on account of their practical importance

demand special treatment, but in the case of any given problem of tliis

class, there is no difficulty in obtaining a solution by a direct application

of the fundamental formulas summarized in Art. 32 of Chapter T. To

take an example, let it be required to find what should be the price

per-cent (including brokerage, &c.) of Metropolitan 3 2)er-cent

Consolidated Stock, on 1st February, 1915, to pay a purchaser interest

at the effective rate i. This Stock is redeemable at par on 1st

February 1941, and interest is payable quarterly on the 1st February,

May, August and November. The required price will obviously be the

sum of the present values at rate i of the various payments the

purcliaser will receive, namely, the quarterly dividends of '75 (neglecting
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income-tax) from 1st Ma\-, 1015, to 1st February, 1911, and the

principal of 100 on tlie last-mentioned date. By Art. 28, Chap. I, the

present value of the first quarter's dividend will be "TSyi, that of the

second 'TSi'*, and so on, the present valueof the final dividend being "TSw^;

and the present valueof the principal will be lOOw^**. Consequently the

required price ='75(yi-t- y»+ ... +v-^) + 'lO0o^, which reduces, by

1— l'2G

suimnation of the geometrical progression, to "75— rr—r+lOOy^^.
(1 + 1)* 1

By logarithms it may be easily found that the value of this expression,

when i=sa\ "035 and r consequently ='9G6184!, is 92-215. Thus it

appears that the price of Metropolitan 3 per-cent Stock, on l.st

February, 1015, to pay an effective 3| per-cent without allowance for

income-tax, would be 92;^ per-cent approximately. The calculation in

this case might be simplified, as will be shown subsequently, by the use

of special tables, but it will be seen that the ;-olution of the problem does

not raise any new question of principle.

3. In many cases it is necessary, or convenient, in order to obtain

the solution of a given problem, to write down an equation of value.

In an equation of this nature it is essential that all the quantities

involved should be discounted or accumulated to the same moment of

time—either the present moment or some future moment as may be

more convenient. Let it be required, for example, to find what two

sums of equal amount due six months and a year hence respectively

Avill together be equivalent at the eff'ective rate i to a single payment of

P due nine months hence, and let each of the required sums be X.

Then the equation of value may be written down either as at the

present moment, or, more conveniently, as at the date when the

payment of £P falls due. In the former case the equation will be

Xi'^ + Xi'=Py'-

and in the latter X(l + 0' + X(l- + 0"'= P-

In this case the two equations are equally easy to write down, and

the first reduces immediately to the more symmetrical form of the

second, but in some cases much trouble will be saved by selecting the

most appropriate moment at which to write down the equation of value.

4. Another point to which attention may be directed is that in

determining the etTective rate of interest yielded by a transaction

extending over a period less than a year, or by a number of transactions

extending over different periods, it is not necessary to make any

,' 9
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assumption as to the terms upon whicli the capital employed in any one

of these transactions is or could be invested after the close of that

particular transaction. Thus the effective rate realized by the purchase

of a bill for 100 due 3 months hence at the price of 98 is (1^^)^— -^ »

it is immaterial, so far as the rate realized upon this particular

transaction is concerned, whether or upon what terms the proceeds of

the bill are invested for the remaining nine months of the j^ear. So, if

two sums of Si and S2 due at the end of Jii and 7?2 j'ears respectively

are acquired for a present payment of P, the effective rate realized will

be *', as determined from the equation P= Sif'*i + S2t''*2. The result

means that the entire purchase-money is invested at rate i until part of

it is realized on the first sum becoming due, and that thereafter the

remainder is invested at the same rate until realization, and the

transaction as a whole is said to yield that rate ; it is immaterial how

any part of the invested capital is re-invested after realization.

5. A third point, and one of considerable practical importance in the

solution of problems in compound interest, is that a corresponding

effective rate may always be substituted for, or employed in working ii>

the place of, a nominal rate, and vice versa. Thus, if it be requii'ed to

find the value of any series of payments, or to determine the conditions

of some financial transaction, on the basis of interest at a given

nominal rate J, the problem may be worked out on the basis of ai>

effective rate i, and the result in terms of the given nominal rate will

be obtained by substituting for i its value in terms of j. In many

cases it will be found very much simpler to proceed in this way

than to work throughout in terms of j. Occasionally, on the other

hand, it may be found convenient to employ a nominal rate in workings

and to substitute for that rate, at the final stage, its value in terms of

a given effective rate. Similarly, if it be required to find the rate

of interest yielded by a given transaction, it is immaterial to the result \

whether the effective rate or a nominal rate be determined. The object

in all cases should be to determine the yield in that form—whether as

an effective rate or a nominal rate—to which the conditions of the

question most easily lend themselves. The yield, when determined, can

of course be readily expressed as an effective rate or a nom nal rate in

accordance with the requirements of the question. 'I hese principles

follow at once from the fundamental equation

/ Jim) \
'"«

(1 + /)"=:M + - j for all values of '/i.
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6. The following examples further illustrate the principles and

formulas established in the preceding chapter :

—

(i) The sum of the amount of 1 in 2 years at a certain nomina?

rate of interest convertible half-yearly, and of the present

value of 1 due 2 years hence at the same nominal rate

of discount convertible half-yearly, is 200480032.

Find the rate.

Tlie amount of 1 in 2 years at the nominal rate of interest

2r convertible half-yearly is (! + ?')•*. And the present

value of 1 due 2 years hence at the nominal rate of discount

2r convertible half-yearly is (1— r)*.

/. If 2r be the rate

(l + ;.)4 + (l_r)^z=2-004800C2,

whence r^ + 6?-2— -00240016=0,

or (r2- -0004) (r2+ 6-0004) =0,

giving as a practical solution r="02 and 2;'= •04.

(ii) A money-lender makes an advance on security of a one-month

bill and deducts interest in advance at the rate of Is. in

the £. He allows the bill to be renewed 11 times, each

time for a mouth on payment of \s. per £, and at the end

of the year the bill is duly met. What rate of interest

does he realize on the transaction ?

The net sum invested by the money-lender in respect of each

unit of the amount of the bill is (after deduction of the

first month's interest) "Oo. At the end of each of the first

11 months he receives '05, and at the end of the 12th

month he receives 1, that is, -95 (the net sum invested)

+ "05. Hence on each unit invested he receives interest at

12
the rate of — per annum payable monthh'. This is the

nominal rate of interest convertible monthly realized on

the transaction. The corresponding effective rate is

" /20\'2
f T-^ ) —1, which =:-S50G, or 85'06 per-cent per annum.

It may be observed that if the transaction had been

determined at the end of the first month by the bill
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being then met, the effective rate realized would have been

precisely the same. The successive renewals of the bilT

upon the same terms as those upon which it was initially

discounted do not affect the rate of interest realized ; they

merely provide the money-lender during the remaining 11

months of the year with an investment yielding the same

effective rate as that obtained on the original transaction.

(iii) In how many years will a sum of money double itself at

compound interest ?

If interest be assumed at the effective rate i, the required

number of years will be n, where (!+ *)"= 2. In any

given case, the value of n will be most accurately obtained

by ordinary logarithms. Thus, if i:^0o,

loo:2 -30103
n=

log 103 -0211893

= 14-207 nearly.

But a general approximate solution, and a convenient rule for

pi'actical purposes, may be obtained by taking Xai)ierian

instead of ordinary logarithms. Proceeding in this way,

loiXe2 -30103x2-3020jye- _
loge{l+i) . ^'

, ^_
' 2^3

•G9315 r i

t

r i z2n -G93 ^^ . ^ ,1+ - — —- = —
: h 6o approximately.

The number of years in which a sum of money will double

itself at a given effective rate of interest may therefore be

found, with approximate accuracy, by dividing 69-3 by the

rate of interest per-cent and adding "35 to the result.

Compare the common rule:—To find the number of 3'ears in

which money will double itself, divide G9 by the rate of

interest per-cent.

If interest be at a nominal rate j, convertible 7n times a

year, the method of the preceding paragraph will obviously

apply, for — may be regarded as an eflective rate for —th
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of a year. Tlie general approximation will give

/G93 „^\ 1,, , . /COS
,

•35\
/ —

;

1-'35 \ — tlis ol a N'car

—

i.e., (
—:—h •— I years.

I 7 '» \ 3 »«>'

(iv) By how mucl) will the amount of a sum of money in n years,

at a given rate of interest, convertible m times a year,

exceed its amount at the same rate convertible annually ?

Let the given sum be P, the given rate r, and the required

result X. Then

C-PM -f- ] -P(l + r)«=:P(l + r)"
V m.

, !»»rV

-^ 1

For practical values of m,

1+-)'"
, .my , m — l r-~ =1-1

—

-— •
-—- nearly,

1-hr 2m l + r
""

and, since • will usually be small relatively to -,
2m l + r

-^
-^ n

m—l r^ \^ ^ n(m — l) r- .

l-\ ;— •-
1 =iH •

;
approximately.

2m l + rJ 2m l + r ^^

Hence, as a rough approximation for cases in which n is

not large,

^ ^ 2m l+r

To test the accuracy of the result, take P= l, r="04,

m= 2, and «= 50. In this case, P(l + r)«= 7-10G7, and

X= 7-10G7 X — X -——- =-13G7 nearly. The amount of 1
4 1-0-1

-^

in 100 years at 2 per-cent per annum is 7"2'11G, and the true

value of X would, therefore, be •1379.

(v) A sum of money is to be invested and accumulated in Consols

for 11 years from 5th April in a specified year. Obtain

an expression for the effective rate of interest realised,

on the assumption that the rate of income tax remains

unchanged throughout.

The dividends on Consols are ])ayable quarterly, at the rate

of 2^ per-cent per annum, on 5th January, April, July and
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October. Let ko be the price (including brokerage) per unit

of Consols at which the original investment is made

;

ki, k^ . . . kn-i, the prices at whicli the successive quarterly

dividends are invested ; kn the price at which the accumu-

lated amount is sold at the end of n years ; and t the rate of

income tax per unit. Then if i be the effective rate of

interest realised, (1 4-?)"=

knr
, 0062.-)(l-Ol1+

-00625(1-0"
1+- ^ ^

ki

•00625(1-0"
1+ -

^

kn

from which the value of i may be found, if the values

of f and the k's are known, by taking logarithms.

If the price has fallen or risen more or less continuously during

the period under consideration an approximation to the

value of i would be obtained by assuming all the dividend

investments to have been made at the mean price, on

which assumption
•00825(1-0'

nlog (1 + O = log ^w— log A-o+ 4«lo^ '^
KA-̂ o+kn) J

Suppose, for example, n= 10 ; Z'o='9 ; kn^'85 ; and f= 9d.

in the £. Then the api^roximate formula would give

10 log (1 + -log 85 -log 90+ 40 log 1^006875

whence ^=: 021927.

The problem is of some importance on account of the facilities

given for the investment of Post Office Savings Bank deposits

in Consols, and it will be seen from the above example that

with an initial price of 90 a fall of 5 in 10 A-ears would

reduce the return from about £2. 13s. to under £2. 4s. pei*-

cent, which, however, would still be somewhat more than the

2 per-cent allowed on deposits. It should, however, be borne

in mind that under the arrangements for the investment of

dividends on accumulating Consols accounts the quarterly

dividends are not invested until about a month after the

dates on which they become due, with the result of an

average loss of a month's interest on each dividend.

7. The problem of finding the equated time for a number of sums

due at different times, or, in other Avords, the average date at which, on

the basis of an agreed rate of interest, all the sums might be paid
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without theoretical advantage or disadvantage to eitlier party, is one of

some practical importance.

Let the various sums he Sj , So, S3 . . . S,., due at the end of

''ij ''2> ''3 • • • ">• J ears respectively, and let n be the equated time on the

basis of interest at the effective rate i. Then

(S1 + S2+ . . . -rS,)t-"— Sit'"i + S2t""-'+ . . . +S,.t-"'

whence

log (S1 + S2+ ... +Sr)— log (Si?;«.4-S2f"'^+ • . . +S,f"g ^^."=
log (1+0^ ;

^^

• •
^'^

The accurate calculation of n by this formula would not, in general,

present any difficulty, but an approximation to its value may be obtained

in the following way. In terms of 8, the force of interest or discount

corresponding to i, the formula becomes

n^-^\o^

__1~
8

<ir,

and

Si^-"iS4-S2^-»i«-!- . . . +S,.e- nr&

s,

«,282

+ Sr

(i_„.8+'^--...) + s.(i-«.s+^!f!-...) +

S] +S2+ • • • +Sr

if 2S be written for (S, + S2+ . . . +S;.),

2?iS for («iSi + «2S2+ • • • +"rSr)

2«2Sfor (h,2S, + «2-So+ . . . +«r-S;-).

1, r /2»S- 2;i-':^82

1 T/ShS 2;<^S 8^

8LI2S

2^S_
Ts

1/2«S. 5»2S5-^

2S 2

2«-S /2/.S

8- +

+ terms involving higher powers of 8

2«S

•]

2S V 2S

Hence as a tirst approximation

2«S
;«= (-)

26 ^ ^

and as a second approximation

2»S 8r2«2S /2»SV-|

''=s5-2L^-(^jJ • • •
('^

It will be found that formula (3) gives a close approximation 10 the true

equated time m most cases that are likely to arise (see examples, J. I.A.,

vol. xlv, p. 486). But in actual practice it would always be advisable

—

and would generally entail little, if any, more work— to calculate tlie

equated time accurately by formula (1).
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8. Formula (2) of tlie preceding Article expresses algebraically the

common rule for finding the equated time of payment of a number of

amounts due at different times : Multiply each amount by the number

of years to elapse before it becomes due, and divide the sum of the

products by the sum of all the amounts. It is obvious, however, from

inspection of the second term of (3), which term may be written in the

SSSiS^C^i— «2)^ ^, .. -p .1 r^ 1 ^ i.^ 1 +lorm — 7^^Q~<i »
'^"''^^ 't ^^'^^ diiierences between the pericds to

elapse before the several amounts become due are large, the result given

by formula (2) will differ materially from that given by iormula (3), and,

therefore, in general, from the true equated time. The rule cannot,

therefore, be relied upon in practice, and must be regarded as giving a

rough approximation only to the true result in cases in which the

respective periods of deferment of the several amounts do not differ very

greatly.

9. The result given by the rule discussed above always exceeds the

true equated time ; that is to say the rule favouis the debtor. The

following neat pi'oof of this fact is taken from J.I A., vcd. xxxiii

p. 53-9 :
—

The Arithmetical Mean of Si quaiitities, each =v^'i, S^. quantities,

. Sir«i + Sof»-2+ . . . +S^f«r
each =:t;"2, . . . b^ quantities, each =«"r, is ^—

^

^ .

The Geometrical Mean of the same quantities is

9itSi+7toSa+ . . . -f niS r

V S,+S2+ . . . +Sr .

Now the Arithmetical Mean of any number of quantities is > their

Geometrical Mean

Si y«i + S2W'»2+ . . . + S,.i;»r .
" 1
s . +" .s---+^j + " 'Sr

.-.
7; is >y S.+S,+ . ..+Sir

S1 + S2+ . . . +S,.

or

77iSi+^:..S., + . . . +ni-3r

(S,f«i+ S2f"2+.. .+S,.?)«>•) is >(Si + So+ . . .+S,.)y s;+a,+ . . . +s,-

"

From this inequality it appears that the present value of Si due at

the end of «i years, S2 due at the end of «2 3'ears, &c., is > the present

^ i: ^^-^ ^' , \ ^ i. t.\ If «lSl + "2S2+
. • .

value or (01 + 02+ • • •) due at the end or —
;

years.
^1 + ^2+ • • •

The quantity -^—~^- -^ is therefore > the true equated time
81 + 02+ . . .

of the sums.
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10. As a practical example of the foregoing proposition, take the

following:—Which would he the hetter investment—two hills for

£5,000 each for two and four months respectively, or a three months'

hill for £10,000, the same rate of discount heing offered in hoth cases?

Since commercial discount is calculated hy the formula -^ where

S is the amount of the hill,/" the rate of discount, and —th of a vear
1)1

the time, the price of the two bills for £5,000 each will be exactly

the same as that of the single bill for £10,000. But at a given rate

of interest the present value of £5,000 due at the end of two months

and £5,000 due at the end of four months is > that of £10,000 due

at the end of three months. Therefore, at a given price, £5,000 due

at the end of two months and £5,000 due at the end of four months

give a better yield than £10,000 due at the end of three months; in

other words, the two bills form the better investment.

Of course, in practice, other considerations would come in. The

rate of discount in commercial transactions may be considered as

representing partly interest and partly a premium for insurance against

the risk of possible loss of principal ; consequently a higher rate will

generallj be obtainable on bills for longer periods.
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CHAPTER in.

On the Valuation of Annuities-Certain.

1. An Annuity is a series of payments made at equal intervals

during the continuance of a given status.

2. When the status is a fixed term of years, the annuity is called an

annuity-certain.

An Annuity-Certain may, therefore, be defined as a series of

payments made at equal intervals during a fixed term of years.

3. When the payments are of uniform amount, the annuity is

measured by the total amount payable in a year, which amount is

sometimes called the annual rent. Thus, an annuit}' under which

k 1
a payment of — is made at the end of each — th of a year is described

' "^ m m -^

as an annuity of 1c per annum payable m times a year, and k is said to

be the annual rent of the annuity.

4. Annuities-certain may be immediate, in which case the first,

payment is made at the end of the first interval; or dice, in which

case the first payment is made at the beginning of the first interval; or

deferred, in which case a certain number of intervals has to elapse and

an immediate annuity is then entered upon.

Thus an immediate annuity of k per annum, payable quarterly for

k
n years will consist of 4h payments of - each made at quarterly

intervals, the first being made at the end of three months and the last

at the end of the n years. In an annuity-due of the same description,

the first payment is made immediately and the last at the beginning of

the fourth quarter of the «th year. And in a similar annuity defei'red
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in 3'ears, the tirst payment is to be made at the end of {in-\-\) years and

the lust at tlie end of {ni+ ri) years.

5. A continuous annuity is one which is assumed to be payable

momently by infinitely small instalments.

6. All annuity of which the payments are to continue for ever

is called a perpetuity. The expressions "immediate perpetuity",

" perpetuity due", "deferred perpetuity", and " continuous perpetuity",.

are used with significations similar to those attaching to the corre-

sponding descriptions of annuities.

7. When the successive payments of an annuity are not taken as

they fall due, but are left to accumulate at compound interest, the

annuity is sometimes said to be forborne. The sum of the amounts of

the successive payments accumulated to the end of the period during

which the annuity is payable is called the amount of the annuity. The

sum of the present values of the successive payments is called the

present value of the annuity; an annuity of which the present value is

k \)er unit of annual rent is said to be worth Jc years' purchase.

8. The notation employed in the valuation of annuities-certain, of

which the periodical payments are equal, is as follows:

—

s'^ denotes the amount of an immediate annuity of 1 per annum

payable annually for n years.

Sn\ „ th(' amount of an immediate annuity of 1 per annum

payable p times a year for n years.

Sn\ M the amount of a continuous annuity of 1 per annum

for n years.

(7,71 '• the present value of an immediate annuity of I per

annum payable annuall}' for n years.

«„l ,, the present value of an immediate annuity of 1 per

annum payable p times a year for n years.

dn] ., the present value of a continuous annuity of 1 per

annum for n years.

an| ,, the present value of an annuity-due of 1 per annum

payable annually for n j-ears.

„li7S „ the present value of an annuity of 1 per annum,,

payable annually for n years, deferred m years.
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The S3'mbo]s a and ,„!« may be qualified hj tlie affix (])) in the same

way as the symbol a. In the case of a perpetuity, the suffix ;^ is

replaced by cc . Thus da, denotes the present value of a continuous

perpetuity of 1 jier annum.

9. The following relations obviously hold :

—

a;^, = 1 + r7,73ii (1)

a,i| — - + flr ^ (2)
F ''-pi

»);|"^ = «'n+m| — «ml (3)

ac^=an\ + ,i\aK (l)

10. From the definitions given in Article 8, it will be seen that

the amount or present value of an annuity at a given rate of interest

may be found by summing the amounts or present values at that rate of

the successive payments. Now the amount or present value of any

series of payments at a given nominal rate of interest may be found by

working with the corresponding effective rate and substituting for the

effective rate, in the result, its value in terms of the nominal rate.

Hence the general problem of finding the amount or present value of an

annuit}', payable p times a year, at a nominal rate of interest

convertible m times a year, resolves itself into that of finding the

amount or present value at an effective rate of interest.

11. To find the amount, at the effective rate of interest ^, of an

immediate annuity of 1 per annum payable^ times a year for n years. The

amount of the first payment of the annuity will be - (l-re)"~!), that of

the next -(l-^i)"~p, and so on, the amount of the last payment
P

being -.
'^ P

Hence «'?= ^^ V (l + i)»-l+ (l + >y-l+ . . . +l1

(5)

P

19 This result may be readily obtained by general reasoning. A

anit of capital, invested at the effective rate of interest i will yield
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1 1
interest amounting to (l + i)i^— 1 at tho end of each -tli of a year, or,

1

in other words, an immediate annuity of ^[(l + ?)r>— Ij per annum,

payable p times a year, for n years, and it will remain intact at tlie

end of the period. In the alternative, if the interest be allowed to

accumulate, the original unit will amount to (l + j)** at the end of n

years. These two things must be equivalent; that is to say, if the

equation of value be written down as at the end of « years,

or, as before,

13. To find the present value, at the efTective rate of interest /, of

Sin immediate annuity of 1 per annum payable p times a year for

n years.

1 1

Tho present value of the Grst payment is -vp, that of the second

L-f, and so on, the present value of the final payment being - 1"".

p i?

.
1^

1 2

Hence an\ = [v" + v''+ . . . -ht''»l

p

= -^ (6)
J IP)

14. This result may be established by reasoning very similar to that

of Article 12. A unit of capital invested at the effective rate of

1

interest i will yield an immediate annuity of ^?[(l-f z)p— 1] per annum,

payable p times a year for n years, and will remain intact at the end of

the period. It must, therefore, be equal to the present value of such

an annuity together with the present value of a unit due at the end of

« years; that is to say:—

•

, > 1 — i"
or rA^'=^—

.

J(P)



32 ON THE VALUATION OF ANNUITIES-CERTAIN, [Chapter in.

15. The arsfument may also be put in the following slightly different

form :—An immediate annuity of 1 per annum payable p times a year

for n years is obviously equivalent to a perpetuity of L per annunn

payable p times a year less a similar perpetuity deferred n years. Now

a unit will produce interest of ^^[(l -f »)p— 1] per annum payable J9 times

a year, in perpetuity ; therefore the present value of a perpetuity of

1

p\_{\-\-i)p— 1] per annum payable p times a year is 1, and by simple

proportion the present value of a similar perpetuity of 1 per aunum

is
J

. Hence

_ _1 ,^ _1_
J(P) Jm
1— «»

13. In establishing the formulas for Sn\ and a'n\ it has been

implicitly assumed that iip is an integer, or in other words, that the

term of the annuity comprises an exact integral number of intervals.

In order to extend the formulas to cases in which np is not an integer,

it is necessary to adopt some convention as to the proportion of the

periodical payment which should be paid in respect of a fractional part

1 1
of an interval, say for —th iiart of an interval, or —th of a year. For

•^ wi ^ mp ^

purposes of theory it is joiivenient to make the proportion such

1— r"
tliat tlie formula a~\= —-. may hold lor all values oi n. This con-

vention gives

.hv)

1 — t" r"— r "•»

Jm JiP,

sz "^1 + '' "''' • : • • ' ' '
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from which it appears that the proportionate payment for the final

j_
1 , ~ ,, , (l + i)mp— l 1

, .. /—th or a year would be —
, or the same proi)ortion oi

the periodical payment as the interest on 1 for —th of a year is of the

interest on 1 for -th of a year. Subject, therefore, to the understanding

that the proportion for the odd fraction of an interval is to be

calculated in this way, the formula

and, bv an obvious deduction, the formula

>'.

will hold for all positive values of n whether integral or fractional.

In practice the proportionate payment would be taken as — , am}

the present value of an annuity of 1 per annum payable p times a year

for ( n-\ ) years would consequently be an* H v^+,^.

17. It will be observed that the numerators of the expressions

for Sn\ and «^ are respectively the total interest on 1 in n years, and

the total discount on 1 due n years hence, and that the denominator of

each expression is the nominal rate of interest convertible p times a

year corresponding to the given rate. It appears, therefore, that

(i) the amount of an immediate annuity of 1 per annum at a

given rate of interest is the total interest on 1 in n years

divided by the corresponding nominal rate of interest

convertible with the same frequency as that with which the

annuity is payable, and

(ii) the present value of an immediate annuity of 1 per annum

at a given rate of interest is the total discount on 1 due n

years hence divided by the corresponding nominal rate of

interest convertible with the same frequency as that with

which the annuity is payable.

T»
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These results are perfect!}' general, for the annuity of which the

amount and present value are represented hy Sn\ and «,i] is the most

general type of an immediate annuity payable by equal periodical

instalments.

18. From formulas (5) and (G), or from the verbal expressions

just given, the amount and present value, at the effective rate of

interest i, of an immediate annuit}' of 1 per annum payable with any

given frequency, may be at once written down by assigning the

appropriate value to p ; from the resulting formulas the amount and

present value at any given nominal rate of interest may be deduced, as

already explained, by substituting for i its value in terms of the given

nominal rate. For convenience of reference the general formulas and

the deduced expressions for certain values of p are exhibited in the

following summary :

—

Amounts and Present Values of an Immediate Annuity of

1 per annum for n years :

(a) In terms of the effective rate of interest i.

ANNUITY Payable
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(h) In terms of a noiii/iinl rate of intrreRt j convertihle m i'lmpn. n year

For (1 + substitute {\ + ^\

Annuity Pavable



^ pJ _1 V pj
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effective, of an annuity of 1 per annum lor 2n years. In .symbols: —
a|^'i at 4 per-eent convertible lialf-yearly =Ui..,ii at 2 per-cent effective.

In general, a table of the present values of immediate annuities at

various effective rates of interest may be looked upon as a table of the

\ (1 4-ar)'~"
values of — , and may l)e used lor any purpose for which

the value of this function may be required. A similar extension may
obviousl}'' be given to the application of a table of amoants.

22. Tables giving the pre?ent values and amounts, at various

affective rates of interest, of an annuity of 1 per annum payable

annually may also be conveniently used for calculating the present

values and amounts, at the same etiective rates, of a similar annuity

payable p times a year. For an immediate annuity of 1 per annum

payable p times a year is obviously equivalent to an annuity of s'f^ per

annum, payable annually, that i-i :
—

«S'=4'|"-",7| (20)

a„a
»®=»n-^.^ (-')

,
, ri + n —

1

i
or, smce &""= = .

,/(p) Jm

,(»>_
t

«'/;;= -^-^.Vi ' ' (28)
J IP)

and 6;^1'=-^-s-, (29)
J(p)

These results follow at once, algebraically, from a comparison of

formulas (5) and (6) with formulas (8) and (9). Tiie factor

i . .

;— IS independent of n, and the values f)f ti"'} and s'*',' at a sriven effective

rate may, therefore, be found, for anif value of n, by multiplying the

tabulated values of a-^ ami s^i, at that rate, by a factor which is

constant for a given value of p. A table of the values of t—
JiP)

for those values of i and p which occur most frequently in practice is

given on j). 221.

23. Although the formulas exhibited under (b) and (c) in Article 18

have been deduced from the general formulas expressed in terms of the

effective rate they may of course be used without any direct reference to

an effective rate. If in any given case it is necessary to calculate the
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present value or amount of an annuit}' witbout the aid of interest tables,

the proper formula to employ will be that one in which the rate of

interest— whetlier ett'ective or nominal— to be employed in the calculation

can be directly inserted ; for example, if it were required to find the

amount of a continuous annuity of 1 per annum for 20 years at 4 per-

cent convertible momently—tliat is, at a force of -i per-cent—the result,

by formula (2-1), would be — , which ma}' be evaluated by taking the

anti-logarithm of fths of the common logarithm of e, deducting 1, and

dividing the result by "Ol. Precisely the same result would, of course,

be obtained by first calculating the effective rate corres^jonding to the

specified force of interest, and then employing the formula giving the

amount of an annuity in terms of an effective rate ; for §2^ ^^ <^ force of

interest of 4 per-cent ^5^^ at the eti'ective rate (e'"^— 1) which, by formula

n_|_(g04 1)120 I g-8 1
^^^^' "^

rog^[l+(^-04_i)]
= ^^ ^' b«*"°^^- I^ ^^ obviously a much

sliorter process to use the appropriate formula—No. (24)—without any

direct reft-rence to the effective rate corresponding to the given force.

When, however, the appropriate tables of a—^ and -:— are available^

it will generally be more convenient to make use of the relations

expressed by formulas (28) and (29). For example, the present value>

at 5 per-cent convertible half-yearly, of an annuity of 1 per annum

payable quarterly for 20 years =, by Article 20 and formula (28)

^

i«,V|X — where /= -025, whicli by Table IV, p. 218, and Table VII,
m

p. 221, =12-5514 X 1-00621, or 12-629
; the same result could of course

1 — (1025)^"
be obtained from formula (13) by evaluatino: —— ; -,

^ ^ ^ » 4[(l'02.3)i— 1]

Similarly, the amount at 4 per-cent effective of a continuous annuity of

1 per annum for 20 years could be obtained from fornmla (10) by

(1-04)2"—

1

evaluating , ; but with the aid of Tables III and VII its^ log,(l-U4)'

value is more conveniently obtained from the expression ^..j-, X ^, which
o

gives as the requisite value 29-7781 x 1-01987, or 30-370.

24. By assigning to p, in formulas (5) and (6), a fractional value,

say -, expressions may be obtained for the amount and present value ol
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an annuity of 1 per annum payable every r years, that is, of an annuity

under which a payment of r is made at the end of every rth year. Thus

(;) r[l-iJ"] i my,
and a-^ = Jy^-^_y

= ^•-^J^,yr:rx = ^- ' ' ' ' (^D

from wliicli it follows that the amount and present value of an annuity

of 1, payable every r years througliout a period of n years are

— and —^ respectively. If n be an exact multiple of r, these results

may be verified by obvious general reasoning or by actual summation of

the sums of the amounts and present values of the successive payments.

If n be not an exact multiple of r, they involve the same assumption

as that made in Article 16, namely, that the payment to be made at

the end of the nth year in respect of the final period of, say, t years

(where ^ is < r), bears the same ratio to 1 as the total interest on 1 for

t years bears to the total interest on 1 for r years.

25. A practical application of the formulas of the preceding article

occurs in connection with leases subject to periodical renewal on payment

of a fine. In the general case of a lease renewable at the end of (t+ r)

years, and at the end of every subsequent r years during a total period

of n 3'ears (where n may be assumed to be an exact multiple of r), on

payment, on the occasion of each renewal, of a fine F, the series of

fines will constitute an annuity of F payable every r years for a period

of n years deferred t years, and their present value will, therefore, be

F . v^—_,

or r .

S7\

The only case of much practical imijortance is that in which the lease is

renewable every r years in ^;er^<?^?/?7y. In this case the expression

for the present value of the future fines reduces to F-:— . This formula

is based on the assumption that the first fine falls due at the end of

(t+ r) years. If the first fine is payable at the end of t years, so that

the series of fines constitutes a deferred perpetuity-due instead of an
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ordinary deferred perpetuity, the formula for the present value will, of

course, be

F.j^ (a2)

26. The foregoing investigations relate exclusively to annuities of a

uniform annual rent. It remains to consider the problem of valuing

Varying Annuities, that is, annuities of which the periodical payments

are not all equal. It is, of course, neces.sary that either the actual

amounts of all the payments, or the law by which they may be

calculated, should be given. An obvious method of procedure is to

calculate separately the present values of the successive payments and to

take the sum of the results, and in some cases, where the payments are

few in number and do not follow any simple law, this will be the

simplest course to adopt. But this method would obviously entail great

labour if the number of payments were large, and it is therefore

convenient to investigate general formulas applicable to the more

important classes of cases that may occur in practice. For purposes of

investigation, annuities payable annuaUy need alone be considered, as

the resulting formulas may be applied to annuities j^ayable with any

other frequency by appropriately changing the unit of time and the rate

of interest.

27. Many simple varying annuities may be valued by elementary

algebraical methods.

28. Take, for example, the case of an annuity of which the successive

payments increase or decrease in arithmetic progression. Let f be the

first payment, q the common difference of the series of payments, and a

the present value of the annuity for n years. Then

and av=v^f-\-v-\p-\-(j[)-\-. . . +v^^(p + ii— 2q) + v^'-+^j} + n— lq)

.•. by subtraction, 'iva=v2) + v~q + v^q+ . . . + v^^q—v^+'^(p + n— Iq^

=p . v(l — v"') + qv . an\—7iqv"'-**

whence a=pan\ + g——. (33)
it
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If n be made infinite, n^ becomes a, the value of which is -r; and
t

n v^ , being =
(1 + 0'*' 1 . n-l

.,
(«-l)(«-2) .,

II 2 1 o

!

vanishes. Hence the present value of a perpetuity of which the first

payment is p, and the subsequent payments increase in Arithmetical

Progression with a common difference q, is

? + | (34)

This result might have been obtained by dividing the perpetuity into one

of the uniform rent p, and another of which the successive payments are

P
O, q, 2(7, &c. The present value of the former is -, and that of the

latter is qv'^+ 2qv'^-\- . . ad inf. Now the infinite series {\-\-1v -{-"?> v- ^ . .
)

is the expansion of (l— v)~^. Therefore

qv^+ 2qv^+ . . . «J e^/.= -^-^, = |

,

and the present value of the entire per])etuity is, as before, - + 4,

In this connection it may be pointed out that whenever the successive

payments of an annuity or perpetuity can be identified with the

coefficients of the successive terms of a binomial expansion, the present

value of the annuity or perpetuity may be at once obtained. Thus, the

present value of an annuity-due for («+l) years, whose successive

payments are the coefficients of the powers of x in (1+a:)" would be

(1+ y)", and the present value of a ])erpetuity whose successive payments

r(r + l) 1
are r, —^— , &c., would be (1— y)"'"— 1 or -^^^—1.

29. Tlie annuity whose successive payments are 1, 2, 3, <ic., is

sometimes called an Increasing Annuity without definition of the

nature of the increase, and its present value is denoted by the symbol

(Iff). From the foregoing it will be seen that

{\a)n\— fi,i\-\ ^ (35)
%

and (la)^ = \+ \ (3G)
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30. Next consider the case of au annuity of which tlie payments

increase in Geometric Progression, and let k be the first payment and r

the common ratio of the series of payments. Then the present value of

the annuity for n years

=^kv or A; -.

1— rv 1 + i

—

r

h
The present value of the corresponding perpetuity will be

if /' is <1 + /, and an infiniteh' large quantity if r be=or >1 + /'.

\j^ i 1 /" r"
If ry be put=r' so that j'= 1, the expression kc~^—— takes

r \— rc

^- 1— r'" k
the form -v' r or -«',ti- Oi", alternatively, if" ry be put =1 + ^'", so

r l — i^i-n
^^

that <"= 1, kv takes the Form kvs ,71. Hence it appears
1 + i 1— rv

that the present value at rate i of an annuity of which the first payment

is k, and the subsequent payments increase in Geometric Progression

with tlie common ratio r is equal to the present value at rate i' of

k I + ^

an ordinarv annuity of - per annum, where i'= 1, or to the
r r

)•

amount at rate i" of an ordinary annuity of kv, where i"= :;
^.

— 1.
•^ -^

1 + i

When tlie value of r is such that the resulting value of i' or i" comes

within the range of rates of interest for which the present values or

amounts of annuities ai'e tabulated, the relations just established attbrd a

convenient means of obtaining approximately, withouc tlie labour of

actual calculation, the present value of an increasing annuity. The tirst

relation will of course be applicable when r is <1 + /', and the second

when r is > 1 + /.

31. As an example of the subject discussed in the foregoing article,

sujjpose that a company applies its surplus profits, after declaring a

certain fixed rate of dividend on its ordinary shares, to the allotment to

its ordinary shareholders oF further shares, and that it is recjuired to find

the present value, at say 5 i)er-ceiit, of the dividends for the next ten

years in respect of a present holding on which a dividend of k has just

been paid, on the assumption that the annual allotment of new shares
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will 1)0 at the rate ot" two per-cent on the total nuinbci- of shares existing

at the date of each allotment. Here the dividends will form an annuity

of which the payments increase in Geometric Progression with a

105
common ratio of 1"02, and /' will^—-- — 1 or "08 approximately. The

present value of the dividends will, therefore, be rouglily A,-XffiQ| at

three per-cent= /cx8"53. The true value obtained by the formula

^•(1-02) .
—-^ ^--, would be /fcx8-56.

^ ^ 105-1-02

32. The practical utility of replacing an increasing (or decreasing)

annuity by an ordinary annuity at a changed rate of interest will

be limited to those cases in which the rate of increase (or decrease)

is only fractionally greater (or less) than 1. If r=:l + e, the rate

of increase exactly counteracts tlie rate of discount, and the present

value of the increasing annuity becomes that of an ordinarv

annuity of - calculated on the assumption that money yields no
r

interest, that is to say, in the case of an annuity to continue for

Ilk
n years, — . If ?' is >l + i, i' becomes negative. This, of course,

r

means that the rate of increase more than counteracts tlie rate of

discount, so that the present values of the successive payments of

the increasing annuity form a series of increasing quantities. In each

of the last two cases the present value of the increasing perpetuity

will obviously be infinitely great.

33. A class of varying annuities of a more general type than either

of those discussed in the preceding articles— and one which, in fact,

includes most of the varying annuities that arise in practice—is that in

which the successive payments form a series of which the rth term is a

rational integral function of r. If the function be assumed to be of

the ml\\ order, the present value of an «-year annuity of this type may

be written in the foi-m

34. The summation of this series in any given case may be etlected

by repeated multiplications by 1

—

v or iv, for it is obvious that each

multiplication by this factor will reduce the order of the function by

unitv. Take, for example, the case of an annuity whose successive
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payments are tlie 2nd ])ovvers of tlie natural numbers. Here

a{l- v) = lv+ -h--^+ 5v^+ . . . +{2n—l)v»—ii-v" + ^

a(l— cy= V + 2v-^+2v^+ . . . +2f»-(«2+ 2«-l)i-" + > + «V»+2

2r7-i— i- — (/'2 + 2w— !)««+' + ;<'-'r"+2

and a= ^—

If n be made infinitely great, th's expression reduces to

2

oi" —

;

r.

The infinite series V-+ 2-o + S-r-+ Pv^+ ... is, in fact, the expansion

of {l + v)(l— v)~^ in powers of v.

35. AVhen, as in the example just given, the function is of a low

order— say the 2nd or 3rd—the process of reduction by successive

multiplications by 1— v does not entail much labour. For functions of

higher orders, and for the develo]iment of the general theory, a different

method of procedui'e must be adopted. Tlds method, which involves the

use of the calculus of finite differences, is discussed in Chapter X

.



Chap. IV.. Arta. 1-2.] 4.5

CHAPTEK iV.

Analysis of the Annuity.

1. In the preceding chapter the annuity has been considered as

a given series of paynients, of which it is required to find the present

value or amount at a specified rate of interest. Conversely it may be

rc-garded as the equivalent, in the form of a seri« s of future payments.

of a given present value or principal. Tlius, an annuity of 1 per

annum payable p times a year for n years is the equivalent, at the

1— 2;»

effective rate of interest i, of a given priiiei])al of" —-.— . Hence, an

investor proposing to purchase an «-year annuity payable^:" times a year,

and intending to realize interest on the transaction at the effective

rate i, would expect to receive -r- per atinuu) for each unit invested.

Similarly, the vendor of such an annuit}-, if \villing to sell at a net price

calculated at the effective rate i, would be prepared to give an annuity

1

of — - per annum for each unit of the purchase-money. Investment

««|

transactions involving the payment of an annuity freijuently occur in

practice, and it becomes important, therefore, lo analyze the successive

payments of the annuity in order to determine how they should be dealt

with, on an investment basis, by the respective parties to the

transaction.

2. In the first place, the present value of an annuity mav- be

regarded as a fund which, if accumulated at the assumed rate of

interest, will exactly provide the successive payments of the annuity as
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tliev fall due. In the case of an ordinary annuity-certain payable

annually

(l4 7>«=l + i' + ^-'+-
•
•+i'''~' = l + «'I=ri . . . . (1)

and in the case of a similar annuity payable f times a year

(i+oWr^ -{1+4+1-?+... +.»-^}=-+«^ . • (2)
i> i^ "-pi

These relations are merely the algebraical expression of what must

obviously be the case, namely, that the accumulated amount of the

purchase-money at the end of the first interval will provide the pa^'ment

then due and leave in hand a fund equal to the present value of the

annuity for the remainder of the term. Similar relations will clearly

obtain for the second and subsequent intervals, until just after the last

pavnient but one the fund will be reduced to a\ or a yi, as the case may
pi

be, which will exactly provide the final payment. It appears, therefore,

that by investing the purchase-money at the etfective rate i, and by

keeping the residue of the fund, as diminished from time to time by the

periodical payments, strictly invested at that rate, the vendor or grantor

of the annuity will be enabled to meet the successive payments, while

from the point of view of the purchaser or grantee the transaction is

essentially the same as if he placed his principal on deposit, on the basis

of interest at the effective rate i being allowed from time to time on the

balance standing at his credit, and withdrew at the end of every year

or - th of a year, as the case may be, an amount equal to the

periodical payment of the annuity.

3. In the next place, an annuity may be regarded as a means of

liquidating a debt carrying interest at the assumed rate, the original

sum owing being the present value of the annuity. From this point of

view each payment may be considered as consisting partly of interest on

so much of the debt as was outstanding after the last preceding payment

and i^rtly of a repayment of principal.

In the general case of a debt of ««! which is to be repaid, with

interest at the effective rate «, by an annuity of 1 per annum jmyable

» times a year, the interest for the first -th of a year will be
ir
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1 (j,) ,
1— p^

{{l + i)p—l]ani, which = . Hence tlie imncipal contained in tlie

1 l— i" v^
first paynient of the annuity will he , or — . And the

P P P

principal outstanding after this paynient will he an , which= «'-^^i

Simihirl^', the interest for tlie second - th of a year will he

{(l + i)p — 1}« ^, which = ; the principal contained in the
"

i) P
^ 1

second payment will he , or • , and the princi])al

p p p

outstandinsr after this payment will he n fj , which = r;—^.
p\ r pi

By proceeding in this way, the successive payments of the annuity- may

he divided into their component elements of interest and principal-

repayments in the manner shown in the following schedule:

No. of

interval

vp

Principal o\\in

at beginning
of interval

an\

(p)

a 1

(p)

Interest

for

interval

(\ -v'>)

a-^-'"v)

l(l-vh

Principal

repaid at

end of interval

The final repayment of — pays off the halance of or owincr at the

beginning of the ??^jth interval, and the successive principal-repayments

in the final column add up, as they ought to do, to the original amount

of the debt, namely, «:^, .
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In the special case in which ^= 1, the schedule will stand as follows:.

Year



Arts. 3-8.] RELATION BETWEEN PRIXCrPAL-REPATMENTS. JO

5. Tlie relation betweoii the principal repayments suggests an

instructive method of finding the present value of an annuity-certain.

For, since the successive repayments of principal form a Geometrical

Progression with a common ratio of (l-t-«)p it follows that

C„=(l-fO'»-pC, (4)
p

Now Ci, being the principal included in the first payment of the

annuity, is = -—
-^
(1+ i)/'— 1 «,7 . And, since the final payment of

p I
' J

the annuity must exactly suffice to repay the principal outstanding at

the beginning of the final interval together with interest thereon, it

follows that

P

Substituting for €« and Ci in (-i)

p

p pi )

1— ?•«

whence «'"'=

(P)

JiP)

6. It will be observed that the schedules of Article 3 give not only

a laio of relation between the successive repayments of principal, but

also their absolute values. Thus :

—

1 V}lz1O = -v'"'~ p (5)
V p

and C„i = u"-'»-^» (G)

It follows, therefore, that any given payment of au annuity may be

resolved into its component elements of principal and interest without

reference to a complete schedule showing the respective amounts of

principal and interest contained in each payment. Thus in the general

case of a debt of a^i repayable with interest at the effective rate i by

an annuity of 1 per annum payable^ times a ye/ir:—
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1 m-l
The Principal contained in the tnih payment= -i-""" p

,

P

The Interest contained in the ??ith payment= -( 1— D'"'~ v j,

And the Outstanding Principal just aftor\ [p\^_

the With payment J «-ii'j .

7. In practice loans are often made on the basis of the principal,

with interest at an agreed rate, being repaid bj'^ a terminable annuity.

Tliis mode of repayment is specially authorised or prescribed by Act of

Parliament in certain cases, where loans are raised by local authorities

on security of the rates or by life-tenants of settled estates for

improvement purposes, and it is also not infrequently adopted when

money is advanced on mortgage of depreciating securities such as

leasehold property.

In transactions of this nature a nominal rate of interest convertible

half-yearly is usually charged, and the principal, with interest at that

rate, is made rei^aj'able by an annuity payable half-yearly. If K be the

amount of the loan, n the number of years over which the payments

are to extend, and j convertible half-yearly, the rate of interest to be

paid, then the uniform half-yearly paj'ment to be made by the borrower
XT'

will evidently be — where the annuity- value is to be taken at the

j
effective rate ^ ; the principal and interest included in the wth half-

yearly payment will be and -37 (1— f2»-»»+') respectively,
tt^^ din'

and the principal outstanding just after the mtlx payment will be

^ ;
where all the quantities are taken at tlie effective rate ^

.

The transaction, in fact, takes the form of the liquidation of a debt

of K by means of an annuity extending over In intervals^ interest

j
being at the effective rate of '- per interval.

8. The successive payments of the annuity, in such transactions as

those discussed in the last article, are subject to income-tax only to the

extent of the interest element contained in them. It is usual, therefore,

to insert in the deed creating the security a schedule showing the

amounts of interest and principal respectively contained in each

payment. If the borrower has the right to pay off" the balance of the
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loan at any time during its currency—or, in other words, to redeem

the remainder of the annuity on payment of a sum equal to the present

value of the remaining payments calculated at the rate of interest

payable on the loan—the schedule also serves the purpose of showing

the amount payable on redemption at the end of each interval; if the

boi-rower has no such right of redemption, and is entitled to re-purchase

the remainder of the annuit}^ o"b' ^^^ terms acceptable to the lender or

fixed by the deed, then the schedule must be regarded merely as

showing how the amount of interest contained in each payment is

arrived at, and not as fixing the amount of principal repaid. From the

foregoing analysis it appears that the schedule might be constructed in

^ny of the three following ways :

—

(i) by the method of Ai'ticle 3—that is, by calculating the

interest for the first interval, deducting the result from the

periodical annuity-payment in order to find the amount of

principal contained in the first payment of the annuitv,

deducting this amount from the original debt and so

obtaining the principal outstanding at the beginning of

the second interval, calculating the interest for the second

interval, and so on, from interval to interval.

(ii) b}' calculating in the first instance the complete column of

princijial-repayments, and obtaining therefrom, by subtrac-

tion, the columns of interest and outstanding principal.

The principal repayments may be calculated either by

reference to the fact that they form a series in Geometrical

Progression (Art. 4), or by multiplying the periodical

annuit3'-payment by the successive values of 4?"""^ (Art. G)

or, again, since

1 1)1 1 57! -

1

(l-\- t) p — 1 m -

1

^v''-p = -v''-ir + - v"-ir,
P V P

by calculating their differences by multlidlcation of

{(l-f/')7)— 1[ times the periodical annulty-])ayment by tlie

successive values of zj"'~rr , and then obtaining the successive

repayments by addition. Thus, in the practical case con-

sidered in Art. 7, the column of principal repayments could

be obtained

(a) by calculating the first repa3'ment, viz., -

—

v'-"' or
.11

;

K ;
-K, and then obtaining the subsequent

E 2
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repayments by repeated multiplications by the

common ratio / 1+ ^ ). or

(i) by multiplying — by v'-'\ /•-""', Sec, successively, or

(e) by calculating the differences by multiplication ol>

j K
-— bv t'-", zj'-"^-' &c., successively, and their
2 ff.j;7

obtaining the second I'epayment IVom the first—
calculated as in (a)—and each subsequent repayment

from that preceding it, by the addition ot" those

differences.

(iii) by constructing in the first instance the column showing the

principal outstanding at the beginning of each interval,.

and obtaining the other two columns by subtraction. The

successive amounts of principal outstanding may of course

be obtaining by multiplying the periodical annuity-payment

by the successive values of a\m', or, in the practical case of

Art. 7, by multiplying — by «o7;Tri> "'inr^fi, &c.

In theory it is a matter of indiffex*ence which of these methods is

employed, but in practice it will be desirable to select that one Avhich,

with the least expenditure of labour, minimizes the error resulting from

the necessary limitation of the number of decimal places retained in the

calculations. From this point of view the third method is inadmissible

—

on account of the comparatively large numerical values of the factors

which have to be multiplied together to obtain the successive values of

the outstanding principal—but any of the other methods may be used

(subject, as regards ii (i) and ii (c), to a table of v'"- to a sufficient number

of places to ensure approximate accuracy in the last working-place

retained being available) and their relative merits will depend on various

practical considerations. Methods ii (i) and ii (e) lend themselves

conveniently to the use of the arithmometer, because — in the one case

/ K
or -— in the other can be set ui;) on the fixed plate lor the whole series

2 "JTi

of multiplications by t" ; they do not involve any accumulating error, as

the successive repayments or their differences are independently obtained,

but on the other hand in the case of (i) the accuracy of any particular

repayment does not prove that of the preceding repayments ; of the two
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methods (<-) lias the ;ulvant:i<^cs tliat tlie multiplicand is much smaller, so

that fewer ])laces are reiiuircd in v" , and that each jiroduct would be

automatically added to the last principal-repayment, so that it would not

be necessary to clear the slide after each operation. In many cases,

however—especially when tl>e half-yearly rate of interest is such that the

half-yearly interest can be written down from the outstanding principal

without any subsidiary calculations— it will be found most convenient to

adopt method (i), checking the work at intervals by calculating in-

dependently', and inserting on the working sheet at the outset, periodical

values of the principal-repayments and outstanding principal ; if every

tenth value be inserted, it will be sufficient to retain, in working, one

more place of decimals than the number required in the final schedule.

Whichever method be ado])ted it will as a rule be necessary to adjust the

final figures by inspection.

The process of construction may be illustrated by the following

example : A loan of £1,000 is to be repaid in five years, with interest

at 4 per-cent convertible half-yearly, by equal half-yearly instalments

including principal and interest. It is required to construct a schedule

showing, to three places of decimals, the amounts of principal and

interest respectively contained in each half-yearly payment.

The half-yearly payment will be , where the annuity-value is

calculated at 2 per-cent, that is 1I1-32C53 ... If method (i) be

employed, it will not be necessary to insert any intermediate values—as

the term of repayment extends over only ten half-years—and the entire

calculations will be as shown by the following working-schedule :

Half-year
No.
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The process in this case is continuous ; each half-year's interest is

calculated on the principal outstanding at the beginning of the year, and

the principal-repayment for the half-year is obtained by deducting the

interest from the half-yearly annuity-payment—the latter being taken

as 111-3266 for every third interval, beginning with the second, in order

to allow for the 3 neglected in the third place of decimals. Consequently

the approximate accuracy of the whole of the working is checked by the

practical identity of the final principal-repayment with the principal

outstanding at the beginning of the last half year.

If method ii (c) be employed the differences of the successive

. . / K .

principal repayments must be calculated by multiplying -—— ,that is-

2-22653 by v^\ v'\ &c. It will be sufficient to take the latter to five

places, and the results will be as follows

:

Half-year
No.
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principal repayments in order to make the total l,000,_y7t'^ of the figures

in the third pU\ee of decimals must lie ])ut up 1. These will ohviouslv

be the Hrst, fifth, sixth, ninth and tenth. Hence the iinall}- adjusted

figures will stand as follows

:

Half-year
No.
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of tlie annuity, the difference in the net payment would have to be added

to or taken from the interest— unless a new schedule were constructed.

9. In the analysis of Article 3 it has been assumed that the

balance of each annuity-payment after deduction of interest will be

applied directly to reduce the amount of the debt. The purchaser of

the annuity may, however, prefer to deal with the payments of the

animity in a different wa}-. Instead of periodically writing down the

principal as each payment is made, he may leave it at its original

amount until the end of the term and carry to a separate capital-

redemption account so much of the periodical annuity-payment as is

not required for interest ; the sums thus carried to a separate account,

being available for investment, will of course accumulate at compound

interest. Under this mode of dealing with the transaction a uniform

amount out of each annuity-payment will be required for interest (since

the original principal is treated, for purposes of account, as outstanding

throughout), and consequently a uniform amount will remain to be

carried to capital redemption account at the end of each interval and

accumulated at compound interest. This uniform sum periodically

transferred to the redemption account is called a sinJcing-fund.

In the case of a loan of a,7| repayable, with interest at rate i, by an

annuity of 1 per annum payable p times a year for n j'ears, each

payment of the annuity will provide {(l + ^)p— Ijoji] for interest and

— {(l + 7')p— l}rt,ij ioY sinlcing-fund. Now
P

P P pSn\

Hence, the sinking fund, if accumulated at rate i, will amount at the

(p)

end of n years to — x Sn\ , that is, to «,,,, » which will exactly repay

the principal of the loan. Further, the accumulations of the sinking-

fund at any intermediate period, say after m years, will amount to

(p)

— • s^ , and the deduction of this sum from the original principal

(P)

would leave ««j (
1

'

"^ J
, which may easily be shown to be equal to

«n-''.b' It appears, therefore, that, as should obviously be the case, the
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balance of the original ])rincipal after deduction of the sinking-fund

accumulations is the same as the principal outstanding as obtarned by

the method of Article 3. In fact, the two methods of dealing with

the annuity-payments differ only in form', in the one case the sinking-

fund is carried to a separate account and accumulated at compound

interest, while in the other it is invested in reducing the amount of

principal.

10. In the foregoing article the amount of tlie loan has been taken

as a„( and the annuity as 1 per annum payable j^ times a year. If the

amount of the loan be taken as unity, the annual annuity-payment

required to repay the principal in n A'ears will be — , the annual

1 . .
?•« 1

interest will be ^, and the sinking-fund will be i, that is ^^ or — .

The algebraical identity

i = .- + i (7)

shows, therefore, the relation between the annuity which 1 will

purchase and the annual payment which will accumulate to 1 in n

3'ears, and expresses the fact that the annuity-payment must provide

(a) interest on the amount invested and (J) the necessary sinking-fund

to replace the invested capital on the expiration of the annuity.

In the case of a loan of K repayable in n years, with interest at

rate j convertible half-yearly, by an annuity payable half-yearly the

constituent elements of the half-yearly annuity-payment will be given

by the formula

j
where a27i\ and s^^ are taken at the effective rate *-

.

11. It will be observed that in Article 9 it has been assumed

that the sinking fund will be accumulated at rate i, that is, at

the rate realized on the invested capital. In the ordinary formula

for the present value of the annuity no question arises as to how that

part of each payment representing a repayment of the invested principal

is re-invested, because it is implicitly assumed that the principal

repayments go to reduce the outstanding principal—in accordance with

the analysis of Article 3—and cease forthwith to bear interest in
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connection with this particular transaction ; in fact, from the investment

point of view the transaction is one under which the investor has a

gradually diminishing amount of capital invested. In the analysis of

Article 9, on the other hand, it has been assmned that the investor is

to obtain interest at rate i, not merely on so much of the debt as may

remain owing from time to time, but on the whole of the original

principal throughout the entire term of the annuity, and this assumption

involves the accumulation of the sinking fund at that rate. Obviously,

if the sinking fund were not invested at so high a rate, and the investor

were in the meantime to take interest at the full rate i on his original

principal, the sinking fund accumulations at the end of the term of the

annuity would be insufficient to replace the invested capital. The

question therefore arises, what price should be paid for an «-year

annuity of 1 per annum in order that the purchaser may realize interest

on the whole of the purchase-money for the entire term of the annuity

at rate i', and replace his invested capital by means of a sinking fund to

be accumulated at some other—usually lower—rate i ? Formula (7) at

once suggests the answer. If the invested capital be taken as unity, a

year's interest will be i' and the annual sinking fund must be -^ , where

Sn[ is calculated at rate i. Hence, if the present value of the annuity

under the specified conditions be denoted by a'*'**',

4r,= 'i'+^ = -+i'-i (8)
a-, ^n\ "n\

That is to say, the annuity per annum which 1 will i)urchase on this

special basis= the annuity per annum which 1 will purchase on tlie

ordinary basis at rate ^-^-the extra annual interest to be realized by the

purchaser on the investment.

Tlie corresponding relation for an annuity payable p times a year

will take dillercnt forms according as the interest included in each

periodical payment is assumed to be (a) interest for - th of a year at

the effective rate i', or (h) such that the total interest received in each

year Avould, if accumulated to the end of the year at rate i, provide a

year's interest at rate i'. In the first case
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and, in the second case,

1

„(p)(i'&i)
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interest contained in tlie wth lialr-vearly payment will be

und (1— y2«-Hi + i^_)_ (^j'—j'^ respective^', the principal outstanding

just after the mth payment will be —"^_;2— , and the principal repaid

K(fl27i!— 1'i^r^l) 11 4.1 i. 1 • i.1
will be ^ ; all the present values m these expressions

j
being calculated at the efToctive rate \^. On comparison ot these

expressions with those given in Art. 7 it will be found that the only

differences are in the amount of the annuity-payment and the periodical

interest. The effect of the lender realizing the higher remunerative

rate j', instead of the lower rate j at which the sinking fund can be

accumulated, is that the half-yearly annuity-payment and the interest

contained in each instalment are increased by — U'~j")^ ^^ compared

with what they would be if the annuity were calculated in the ordinary

way at^y convertible half-yearly.

Since ^ (l-t.2n-m+.) + ^ (/__;•) =^-.-~^. a-jiir^ii+ii-f ~ (j'-j)

it will be seen that, as has already been stated, the interest for each

interval is equal to the interest at the remunerative rate on the

outstanding principal together with interest at a rate equal to the

excess of the remunerative over the reproductive rate on the imncipal

repaid.

13. In constructing a schedule showing the interest and princiijal

contained in the successive payments of an annuity calculated to pay

f»ne rate of interest on a loan and to admit of the replacement of capital

at another, it will merely be necessary to construct a preliminary

schedule in the ordinary way at the latter rate and to increase the

amounts in the interest column by the extra interest on the whole loan.

•Suppose, for example, that in the case considered in Art. 8 the

annuity had been calculated to yield the lender 5 per-ccnt convertible

half-yearly on the entire loan for the whole duration of the transaction

and to admit of the replacement of principal at 4 per-cent convertible
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half-yearly. The half-yearly anmiity-payinent would then have been

lll-;i205;5 . . . + -005 X 1000, which = 11G-;32G53 . . ., and the final

Bchedulo would have stood as follows—

Half-year
No.
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hypothesis the rate at which re-investments can be made, and, therefore,

the rate at which money could be borrowed on reasonable security, it

would not suit the borrower to pay the high and increasing rates (as

compared with the principal nominally outstanding) exhibited in the

latter part of the schedule. A transaction involving different

remunerative and reproductive rates must, in fact, be regarded as of the

nature of a sale and purchase, rather than a loan. If, therefore, in the

case of an annuity based on two rates of interest either party desires,

or both desire, to terminate the contract, the terms of re-purcliase

—

apart from any special provision in the security—will generally be a

matter for negotiation. Either party is entitled to the complete

fulfilment of the contract, and the amount to be paid by the original

grantor of the annuity for the re-purchase of the remaining instalments

will have to be settled by agreement.

Three formulas suggest themselves as affording reasonable bases

for negotiation. To fix ideas, consider the case of an annuity of 1 per

annum payable annually for n years and originally bought at the price

of fl^''**', or -, to Tpaj i' on the purchase-money for the entire

term of n years, and to admit of the replacement of capital by a

sinking fund accumulated at rate i, and suppose that the annuity is to

be redeemed just after the ^th payment. Then:

(i) If the vendor desires to repurchase, it appears reasonable

that he should put the purchaser in a position to buy a

similar annuity for the remaining (ji— t) years in the open

market. The rate at which re-investments can be made

being, by hypothesis, ^, it may be assumed that this is the

rate at which an annuity could be bought on the ordinary

basis. Hence in this case the re-purchase price would be

<?;7r7i calculated in the ordinary way at rate i. (

(ii) If the purchaser desires to obtain the immediate use of his

invested capital it may be considered that he ought to give

the vendor credit for the entire accumulations of the

sinking fund—that is, for the principal technically assumed

to be repaid—and to accept the balance of his invested

capital in conmiutation of the remaining payments of the

annuity. On this basis tlie re-purchase-price would be
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,(v * i)

«|i:,*^)-6n-ii_,orfi-*i3V*i.

(iii) If both parties desire to close the transaction it may be

argued that the purchaser should sell back the remainder

of the annuity on the basis on which he originally bought

it, that is, at a price to yield rate ^' and to admit of the

replacement of the principal at rate i. In these circum-

stances the re-purchase-price would be

«'i^*' or
n-t\ 1

Let the amounts to be paid on re-purchase on these three bases be

respectively denoted by lij, Ko and 1^3

.

Then E,=«—^=:a,:n/— +''V|r,^'"'

R3=a'i:*»)= "•

1 ; 1
-— +i' +i'—t

Hence E,i= Pi2+ (i'— i)a^^^.af''^^

These relations bring out clearly the differences between the three

methods of calculating the re- purchase price. In the first case the

purchaser receives the full present value of the remaining instalments of

the annuity. In the second case he gives up the extra interest whijh he

would have obtained during the remaining {n— t) jears on the whole of
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his original capital if he had retained the annuity, the present value ot

this extra interest being «-- X (?'— i)fl|ij*". In the third case lie gives

up the extra interest which he would have obtained during the remaining

(n— t) years on the sum actually paid to him by the vendor for the

re-purchase of the remainder of the annuity, the present value of this

extra interest being o— x (i'— i).a'-^^K Obviously, Ri gives theo „ _(| \ ^ n-t\ - ' o

largest and l>o the smallest re-purchase price, the result gi^en bv IJ3

being intermediate in amount. In practice the price obtainable on

le-purchase of such an annuity as that under consideration ma}- be

expected to be determined almost entirely by the market rale of interest

obtainable on similar security, that is— on the assumption that the

reproductive rate coincides closely with the market rate—to approximate

to El rather than Eo or E3, for the purchaser, if desirous of realizing, will

generally be able to find some third party who will be willing to take

over the investment in the event of the original vendor not wishing to

re-purchase. Hence the formulas E2 and E3 must be considered as

chiefly of theoretical interest.

15. So far, the investigation of the present chapter has been confined

to the case of an ordinary immediate annuity, but it is obvious that

similar methods of analysis may be applied to any definite and certain

series of payments. Any such series of payments may be regarded as

the equivalent—at the rate of interest employed in the calculations—of

its present value, and the successive jiayments may be divided into their

component elements of principal and interest. The general principle

to be observed is that so much of each payment as is not rec|uired for

interest will be applicable to the reduction of the outstanding principal.

16. In order to find the present value of a series of jjayments, other

than an ordinary immediate annuity, to pay interest at one rate on the

whole invested capital until the final payment of the series has been

made, and to admit of the replacement of the capital by a sinking-fund

accumulated at another rate, it will, in general, be necessary to ])rocecd

by a ditlerent method from that of Ai't. 11. Let the successive annual

payments be Ui, u^, W3 • • • w«— the entire series extending over n years.

Let the reinunerative and reproductive rates be i' and i respectively, and

let the present value of the series of payments on the special basis be

flri'&i
J
further, let it be assumed that none of the quantities Mj . . . tin is

less than i'a^'^'. Then, since the balances of the successive payments

after deduction of interest on the invested capital are to be invested

and accumulated at rate i to replace the capital at the end of 11 years^
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(?/i
— ^'«•'*•)(l + ^)"-' + (/^^— iV/' ^')(.l- + 0""-+

• • •

=«**'

whence r/'*'= —^
'-

r,
= -. -, -v; • . (12)

l + ^s- i^^i'—t^a;:]

That is to say, the present value of the series of payments on the special

basis under discussion is equal to their amovnt at rate / divided by

l-\- i's:;;\, or t\\Q\v present value at rate i divided by l-\-{i'— i)fi-\.

Fi'om this freneral result it follows at once that

1 + is-^ l-\- (j—i)ft-i

ns in Formula (10).

It will be observed that the validity of Formula (12) depends on

none of the payments being le?s than i'a' ^ '. For, if any one of the

payments

—

u,-, say— is less than i'a'^', then the method by which

Formiila (12) is obtained would implicitly involve either that the balance

of the year's interest could be horroived for the remainder of the term

at the reproductive rate i, or that it could be withdrawn from existing

sinking-fund accumulations, and neither of these assumptions is justified

by the fundamental condition that the sinking-fund can be invested and.

accumulated, at rate i. In fact, the condition is a practical one,

and cannot be supposed to apply to a negative sinking-fund.

In any given case, therelbrc, if it be found that any of the series of

payments would be insufficient to provide interest on the value as given

by Formula (12), the result must be rejected as incorrect for practical

])urposes, and the value must be sought by other methods— in general by

trial and error. In some cases it will be obvious at the outset that the

method under discussion will not be applicable. Suppose, for exampL.',

that it is required to find the value of a deferred annuity to pay rate i'

on the capital invested, and to admit of the replacement of the capital by

a sinking-fund invested at rate i. Here no sinking-fund can be formed

until the annuity begins. During the period of deferment the investor

will have to capitalize the interest, and since he requires interest at the

remunerative rate on his whole invested capital this capitalized interest

must be accumulated at rate i' . Hence the required value— ,|ff'- ' say

—

will be given by

(l + '')'..,«^"=I^(i?^;
whence „„<:-=. ^^g.-.
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CHAPTER V.

Ox THE Valuation of Debentures and OTnEU Secuhities—
Miscellaneous Problems.

1. It is proposed in this chapter to consider the application of the

Theory of Compound Interest to some representative examples of that

class of prohlems in which it is required to find the present value of a

given ohligation or combination of obligations, or the terms of a

given transaction, in order that a specified rate of interest may be

realized. It does not come within the scope of this work to consider

the nature of the security for the due fulfilment of the conditions of the

contract in any particular case, or the legal incidents affecting any such

contract, or the rate of interest which may properly be employed in

valuation. It will be assumed in all cases that the payments provided

for under any given contract will be certainly made at the stipulated

dates, and it will be understood that the rate of interest that may be

used in any example is employed merely for purposes of numerical

illustration without reference to its ap]jlicability to the particular

security in question.

2. The most important problems of the class under consideration

are those that arise in connection with the valuation of redeemable

securities—that is to say, securities under which there is an obligation

or an option (exercisable by the debtor) to pay a given sum on a given

date, and an obligation to pay in the meantime a fixed periodical

dividend.

3. Ordinary Stocks and Shares do not lend themselves to exact

valuation at a specified rate of interest owing to the liability of the

dividends to fluctuate from year to year, and preference, guaranteed and

perpetual debenture stocks—or, in fact, any pre-ordinary stocks carrying
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a fixed annual dividend witliout any express 2)rovision for repayment of

the capital—may obvioush' be valued by simple proportion ; for example,

the present value, to pay 3 per-cent convertible half-yearly, of a 5 per-cent

pc'ri)etual preference stock on vvhich the dividends are payable half-

yearly—the next being due in six montlis' time—would be 100 X -y or

1G6G per-cent, and the present value of the same stock to pay 3 per-cent

21(1+ x/i-03)
effective would be 100 X -^ or 1G7*9 ; if the next dividend

o

fell due in less than six months it would merely be necessary to

accumulate the present value as obtained by the method just explained

for the pei'iod elapsed since the due date of the last dividend.

4. The valuation of redeemable securities presents a more complex

problem inasmuch as the arrangements in regard to redemption have to

be taken into account. As a preliminary to the investigation of the

subject the following general points may be mentioned

:

(i) When the price at which a debenture or other security is

redeemable differs from its nominal amount, it is the former

which must be taken into account in the valuation of the

security. Apart from the bearing it may have upon the

rights of the holder in the event of a winding-up—

a

contingency which will be disregarded here—the nominal

amount of a debenture, in such a case as that under

consideration, is of no importance except as a factor in the

determination of the amount of the periodical dividend.

Thus, a dL4)enture for 100 bearing interest at 5 per-cent

payable half-yearly and redeemable at the end of 15 years at

110 represents, for present purposes, a contract to pay 110

at the end of 15 years and 2^ half-yearly during that period;

the fact that the debenture is nominally for 100 merely

assists in fixing the amount of the half-yearly dividend.

(ii) The so-called "rate of interest" on a debenture has no

necessary connection with the true rate of interest employed

in valuation, and would be more conveniently termed a

"rate of dividend." Like the nominal amount of the

debenture it should be regarded merely as a factor in the

determination of the periodical dividend. In the case of iv

debenture bearing interest at, say, 5 per-cent payable half-

F 2



G8 TALUATIOX OF IJEIIKNTURKS AND OTIIKU SKCUIUTIES. [Chapter V.

yearly, it would be incun'L'i,-t to irganl this rate as a noniiiial

rate, and to treat it as efiuivalent to an etlective rate of

(1025)-— 1, vnless the true rate of interest employed in

valuation were also 5 per-cent convertible half-yearly. In

general, the equivalont annual dividend per-cent in such a

case would be 2.1 x {(l+/)i-f 1} where / is the true rate of

interest employed in valuation. I'lius in the example of

Art. 3 the eijuivalent annual dividend has been taken as

2i(l+ v/r^), not as 5-OG2o.

(iii) When a debenture is only rcdeemaljle at the option of tlie

debtor, it will be necessary in valuing the debenture at an-

effective rate of interest less than the ratio of the equivalent

annual dividend to the price at which the debenture would

be redeemable to assume that the option to redeem ivill be

exercised, and in valuing it at an etteetive rate exceeding

that ratio to assume that the option will not be exercised.

The reason for this will be best seen b}' consideration of an

actual example. Take, for instance, the case of a debenture

bearing interest at 5 per-cent payable annually and redeemable-

at the option of the issuing company at 125, so that the

ratio of the annual dividend to the redemption price is

4 per-cent. The issuing companv is, in this case, practically

in the position of owing a sum of 125—repaj'able or not at

its option—upon which it pays interest at the rate of

4 per-cent. If, now, the credit of the company or the

nature of the security is such that the debenture would be

valued by an investor at a lower rate than 4 per-cent, it is

probable that the company could re-borrow at a rate of less

than 4 per-cent, while, if the converse were the fact, it is

probable that the company would have to offer a higher rate

of interest than 4 per-cent if it sought to raise money to repay

its existing debentures. Hence, in the first case, it may be

assumed that the option would certainly be exercised; and in

the second case, that it would not be exert-ised.

5. To proceed now to the problem of valuation. It will be

convenient to begin with the case of a debenture or other security under

which the i)rincipal is redeemable in one sum.



Arts. 4-5.] OKNKH.VL VAT>L"ATI0.V-1'0U.\: l"!,,V. GO

Let Ci repivsont tin.' price to be paid on redemption.

„ »i „ tlic number of years at tbe expiration of ubieli the

security becomes redeemable.

,, I\i ,, the present value of Ci due ;;i years lienee at the

I'ate of interest employed in the valuation of the

security.

,, rj ,, the ratio of the dividend per annum to C;.

.. A

I

,, tlie ])resent value of the security, including

bi-okei-ag-e ov commission and any other costs

incidental to purchase.

Then, if the security be delinitely redeemable at tbe e.\2:)iratiou of

n^ years, and the dividend be payable j; times a year—the next dividend

beinq; due th of a vear hence—the iiurcbaser will be entitled to a sum

of Ci j)avable at the end of «i vears. and a jieriodical dividend of -—

'

P

pavable at the end of everv -th of a vear thi'ouirhout the period of

;?i years, or, in other words, an annuity of yCi payable j) times a vear

for ;?i N'ears. Hence the value of the security to pay the effective rate i

will be given by the foi'inuhi

A,rr:.',i;»,-f ^C-r/!;;' (1)

, ,
1 — r">

or, since fl""'—
'

'111
,

A,~Cii-"'+_^Ci

.

Ji,A

,^K,4- ^(C\-K;) (2)

where Ki represents the };reseiit value of the capital rcpavable.

Bv substitution of 1 f -
) —1 for 2, it follows that the value ot

the security to pay the nouiinal rate j convertible m times a vear will

be iriven bv the formulas



VALUATION OF DEBENTUKES AND OTHER SECUniTIES. [Chapter >r.

i-ri+^

or A,= TC,+ -^, (C,-K,) .... (4)

P 1 +

where in the latter fonnulu IC, is to be calculated at the nominal rate

; convertible m times a ye:ir.

6. If m be put=p, fornuilas (3) and (4) take the form

A,= Ciy2'«.+^-'«^-;;i7i (5)

or A,=K,+ ^(C,-K,) (0)
.;

V
where «P**i and ffiT^n a^'e to be calculated at the effective rate - , and Kj

P
represents the present value, at the nominal rate j convertible p times a

3'ear, of Ci due Ui years hence.

It appears, therefore, that the present value of a security such as that

under consideration, at a nominal rate of interest convertible with the

same frequency as that with which the dividend is 2-)ayahIe, may in all

cases be written in the simple form

K,+ -^(C\-KO
J

where j is the given nominal rate of interest and K| is the present value,,

at that rate, of the capital repayable. This result admits of a simple

verbal proof. For if the dividend were at the rate of j per unit per

annum, payable p times a year, calculated on Ci , it is obvious that the

present value of the entire security to pay the rate of interest j
convc'rtil)le p times a j'car would be Cj, and since the present value of Cj

due ni years hence is, by definition, Ki, it follows that the present value

of a dividend of jG\ per annum payable p times a 3'ear, for the term of

Wi 3'ears, would be Cj— Kj . By simple proportion, the present value of a

dividend of 1 per annum payable p times a year for the term of Wj years

Q J^
would be ——— , and the present value of a dividend of yCi per annum
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rt XT -

payable j9 times a year for «i years would be ^Ci X ——— or -. (Ci— K,).
J^\ 3

But the present value of the entire security is the sum of the present

value of Ci due nj years hence, and the present value of a dividend of yCi

payable p times a year throughout the term of Wi years. Hence

A,= lM+^(C,-KO
J

Forinula (2; may be established by precisely similar reasoning, \i j(p) be

written for /, and if it be remembered that the present value of the

security at the effective rate / is the same as its value at the corresponding

nominal ratey,^!,.

7. In the special case in which p^m=-\, when the problem becomes

that of finding the present value, to pay the effective rate ^, of a security

yielding an annual dividend of yCj and redeemable in «i years at the

price of Ci, the alternative formulas take the form

Ai= Cii-"i+^Cia^| (7)

and A,=K,+ ^(Ci-K,) (8)

8. In practice the periodical dividend (commonly called "interest")

is almost invariably paid half-yearly or quarterly.

If it be paid half-yearly the value of the security to pay the effective

rate i will be

C,r".+yC,«Si (9)

or K,+ -^(C\-Ki). ..... (10)

while the value to pay the nominal rate j convertible half-yearly, may
be written in the form

C,f^».+y_'«2—I (11)

or K,+ -^.(Ci-K,) (12)

where f-"i and rtouTi •'^''e calculated at the effecth-e rate ; and Kj is

written for Ci?"-'*i.
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Similarly, if the dividend be ]);iid (Hiiirterly, the value of the security

to pay the effeetive rate i will be

C,i-".+yC,^'r. (13)

or K.+ '^^fCi-Kij (11)

and the value to pay the nominal i-ate / convertible quarterly may be

written in the form

CM-'^'^+g-^-a-^,. (1-3)

or K,+ -?.(C,-K,) (16)

j
where r*"' and (u;r,\ ^'^'^^ both to be calculated at the rjjfectlce rate '-

, and

Ki is written for Cif^"'.

9. On comparison of the alternative formulas given in the foregoing

articles, it will be observed that in each case the first formula entails the

calculation of two (juantities. namely, the present value of 1 due iii years

hence and the present value of an Wi-year annuity; while the second

formula involves the calculation of onl}^ the single quantity Kj.

Consequently, in any case where the rate of interest employed, or the

value of ;/i, is such as to necessitate the actual calculation of t""i, it will

clearly save labour to use the second formula. But when all the

required quantities are tabulated, it will generalh' be found more

convenient to employ the lirst formula, or, what is the same thing, to

dispense with a formula and to write down the value b}' reference to the

<''encral principle that the present value of the entire security is the sum

of the present values of the capital repayable, due at the end of the

term, and of an annuity of the dividend. For example, if it be required

to find the present value, at 4 per-cent convertible half-yearly, of a

debenture for 100 bearing interest at 5 per-cent payable half-yearly and

redeemable in 20 years at 105, it is simpler to write down the value as

j()5i-«o^_2-.'3r/40i at 2 ])er.cent, and to tuin up t'^" and a^^ in the

5
2 ])er-cent tables, than to go tlirough the process of iiuttmg g— - -

and usinir Iht general I'ormula Ki+ '.(C, — Ki).
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10. ^V'lll,'^ :i redeemable security is bought to pay a rate of intere.st

lower than the ratio of the dividend to the redemption price—that is, if

J he < fi
where interest is convertib'e with the same frequeucy as that

with wliicli the dividend is payable, or if i he < gs \ where interest is

convertible yearly and the dividend is payable p times a year—it is

clear that the price j^aid for the security will exceed the redemption

-

price; in these circumstances, the security is said to be bought at a

premium. In the notation of Art. 5, the premium will be A,— Cj.

Now, if the I'ate of interest employed in valuation be _^' convertible^

times a yeai-, and the dividend be ])ayable with the same frequency,

A , - C, = C, ci"> . - Ci + -^ a^
])

>, .
7*

where ii"'i and cii^l are to be calculated at the eftcctive rate -,
2?

Or, if /.; be the i)rcmium per unit on the redemption-price,

^-•^-7^' (1")

This equation expresses the fiict that the premium per unit is equivalent

to an annuity, at the rate employed in valuation, of the excess of the

dividend per annum over the valuation rate of interest. It is obvious

that this must be the case, for the present value, to pay j' per annum

convertible 2^ times a year, of each unit of capital repaj-able, together

with a dividend of j per annum i>ayable jj times a year, will cleai'ly be

iinity, and the extra value—or premium—due to the dividend l)cing at

the rate of y, instead of /', ])er annum must be the present value of an

animity of the excess of // over j for the term during which the dividend

is payable. In general, if a debenture redeemable in «i years, and

bearing Interest at the rate of
_y

per unit per annum on the redemption-

price i)ayable j^ times a year, be bought to pay the effective rate /, tlie

])remium, per unit of tlie redemption-price, paid by the purchaser, will

be given by the formula

11. In the investigations of Arts. 5 to 10, the security has been

assumed to be cerfahiJi/ redeemable on the exi>iration of the specified
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term of years. On this assumption, the resulting formulas hold

equally whether the rate of interest employed in valuation is less or

greater than the rate of dividend—except that in the latter case the k of

Art. 10 becomes negative, and the security may be said to be bought

at a discount on its redemption-price. If, however, the security bo

only redeemable at the option of the debtor, the distinction explained in

Art. 4 (iii) must be borne in mind; for valuation at a rate lower

than the ratio of the dividend to the redemption-price, all the formulas

(1) to (18) will hold good, but in valuing the security at a rate

exceeding that ratio it must be assumed that the option to redeem will

not be exercised, in which case the value of the security will be merely

that of a perpetuity of the dividend, namely, V-' or '—r-' according as an

effective rate or a nominal rate convertible i^ times a year is employed.

12. It will be convenient, at this point, to consider some actual

ex.imples of the valuation of securities of the class under consideration,

which includes the various British, Indian, and Colonial Government

Securities, many British, Colonial, and Foreign Municipal Stocks, tlie

majority of American Kailway Mortgage Bonds, and numerous Brewery,

Commercial and other Debentures.

13. Take, first, the case of Consols. In this case, dividends are

payable quarterly, at the rate of 2^ per-cent per annum, on every

o January, April, July and October, and the Stock is redeemable at par

on or after 5 April 1923 at the option of the Government. Hence the

value to pay any rate of interest exceeding 2h per-cent convertible

quarterly will be that of a perpetuity of 1h per-cent per annum payable

quarterly. For example, the value per-cent as at 5 April 1915 to pay

2i
Z\ per-cent convertible quarterly would be -" x 100. If, however, the

value were required to pay less than 21 per-cent convertible quarterly, it

would be necessary to assume that the option to redeem will certainly be

exercised. Thus, to pay 2i- per cent efectivc, the value per-cent at

5 April 1915 would be, by Formula (2) and Table VII

100i-«+ 1-00933(100- U»Or«)

where v^ is to be calculated at 2.V per-cent effective. Again, to pay

2.\ per-cent convertible quarterly the value at the same date would be,

'0025
by Formula (17;, 100(H -— u- )
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where tlio annuity-vaUie is to be calculated at -j''^- per-cent effective.

The value at any one of the quarterly dividend-dates to pay 2^ per-

cent convertible quarterly—that is, the same rate as the rate of

dividend— would of course be [)ar.

The numerical values corresponding to the various rates specified

above are shown in the fallowing table, and it will be noticed that the

assumption of a lower rate than the rate of dividend makes very little

difference in the value— owing to the shortness of the term before the

redemption-option becomes exercisable.

Value of 100 CoiisoI>! at 5 April 1915 to pay the vnder-ment ioned ratts.

Z\ per-cent
convenible quarterly
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quarterly on 5 January. April, .Inly and October) they must be regarded

as perpetuities. For example, their values at any quarterly dividend-

date to yield 3f per-eent convertible half-yearly wo\ild be

^^ —— and ^^
, or '.).j /()'.) and SO 3/3. It

01875 -01875

should, however. Le bc^rne in mind, a.s a practical consideration in .>uch a

case as thij:, tiiat ia the event of" a general rise in prices the 3 ])er-cent

stock would admit of a considerably greater appreciation before it would

)jav the borrower to exercise the option of redemption, and conse(]uently

it Hiight be expected to stand at a relativeh' higher price. This will be

clear from the simpler ease of a 4 per-cent stock and a 3 per-cent stock

both redeemable at pir without notice. The value of tlie former, to

yield 4 per-cent, will be 100. That of the latter will be strictly the

value of a stock redeciTable in u years (where n is unknown), and for

any finite value of « this exceeds 75.

15. British Municipal Stocks are usually definitely redeemable at par

at fixed dates, in which case the method of valuation will be precisely

similar to that already exemplified. There are, however, numerous

exceptions to tliis rule. The Stocks of some Corporations are redeemable

only b}' purchase in the open market. Such Stocks will, of course, be

jiroperly valued as perpetuities of the annual dividend. Others are

redeemable at par not later than certain fixed dates, but may be redeemed

at par on or after certain earlier dates at the option of the borrowers. In

any such ease it should be assumed that the option to redeem will be

exercised at the earlier or later date according as the rate of interest

employed in valuation is less than or greater than the rate of dividend.

The Sheffield Water Progressive Annuities present an example of u

somewhat unusual t\'pe. On the acquisition of the water undertaking

by the Corj)oration the ordinary shareholders were offered for eacli £100

Stock {(i) £82 in cash, or (b) an annuity of £3 per annum payable

half-vearly, or (c) an annuity of £2 for the first two years, £2. 5.9. for the

second two years, £2. lO.f. for the third two years, Sic, up to £1 for

every year after the first 10, both the (b) and (c) annuities being

redeemable on or after the expiration of GO years at 25 years'

purchase.

What were the present values, at the outset, of the (h) and {c)

annuities, interest being assumed at 4' per-cent convertible half-yearly ?

Since a perjietuity of 1 per annum payable half-yearly is worth, at
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4 per-cent convertible half-yearly, 25 years' purchase, it follows that f< r

the purposes of a valuation at4f per-cent convertible hall'-yearly the option

of redemption may be disregarded. Hence the present value of the

U
(b) aniiuitv would have been 1 ',<•/-' °=^ — " :=75.

Similarly, the present value of the {c) annuity would have been

where all the annuity-values are to be calculated at 2 per-cent.

Now (i^= —r =50, and
» 02
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the annuity ceases) to 22^, " as near as may be ", per each 1 of the full

annuity, but it is obvious that the actual amount then available to

replace capital will depend upon the rate of interest realized on the

sinking fund investments. Hence, the first step, in valuing the

" J3 " Annuit}^, would be to estimate the amount receivable on the

cessation of the annuity. To do this as accurately as possible, it would

be desirable to ascertain the amount of tlie sinking fund investments at

the date of valuation and to assume the most probable rate of

accumulation for the remainder of the period. But for present pur):)oses

let it be assumed that the sinking fund will accumulate throughout the

entire term at the rate of 3 per cent with half-yearly rests. Then the

capital repayable in 1953 per each 1 of annuity may be estimated at

•03xs'-i2. Hence the value per unit of the "B " Annuitv in 1915, to
1461

pay 3| per-cent convertible half-yearly, would be

•464583«|f+-03sllii.^«'^''

which will be found to be 23 approximately.

17. American Railway Bonds and Brewery and Commercial

Debentures present no special features—apart from the question of

exchange in the former case and the liability in the latter case to

redemption at pai'—in the absence of any special provision to the

contrary—in the event of a winding-up. As a representative example of

the latter type the following may be taken :

Required the value per-cent at 1 January 1915 to yield 4 per-cent

effective, of debentures bearing interest at 4^ per-cent payable half-

yearly on 1 Jaimarv and 1 July, and redeemable on 1 January 1960 at

par or on or after 1 Januar^-^ 1925 at the option of the issuing Company

(or in the event of voluntary liquidation) at 10 per-cent premium.

A dividend of 4h payable half-yearh' represents 4"09 per-cent on 110.

This exceeds an cH'ective rate of 4 per-cent. It must be assumed,

therefore, that the option to redeem will be exercised. Hence, by

formula (10), the re(|uired present value will be

•04(')9

nOr''>+—.— (110-110t-i«)

where ^J'" and /,„) are to be calculated at 4 per-cent. The numerical result

will be found, by Tables II and VII, to be 111-172.

18. In all the foregoing examples the date of valuation has been

taken as one of the days on whicli the dividend is payable, so that the
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dividend begins to accrue from the date of jjurchase. In practice it will,

of course, more often hajjpen that it is required to find the value of a

security at a date intermediate between the dates on which the dividend

is payable. In such cases the security will iuclude a certain amount of

accrued dividend (unless the date of purchase precedes the dividend due-

date by a few days only, in which case the security may be sold

€X dividend), and it will be necessary to allow for this in calculating the

price. The simplest course to pursue in all such cases is to value the

security just after payment of the last dividend or just before payment

of the next dividend, and to accumulate the former or discount the

latter to the actual date of purchase. Take, as an example, a redeemable

debenture carrying a half-yearly dividend, and let it be required to Cud

its value with accrued dividend — th of a half-vcar before the next

dividend due-date, to pay J per annum convertible half-yearly. The

value just before the next dividend is paid may be written symbolically

as Ai-f ^r-, and the discounted value — th of a half-year previously

_ 1

will, therefore, be f 1+ '-j (''^1+ o')- -^* ^he end of the half-year

the interest to date on the purchaser's outlay will amount to

which is identically equal to

T-[(i+i)"V'+f)-^']

Hence it appears that the dividend payable at the end of the half year

will suffice, as it ought, to i)av interest for — th of a year and to write
2m

down the invested capital to Ai. In practice, interest for — th of a half
m

j
year would be taken as -;^, and the value of the security would

2vi ''

accordingly be taken as

^^\
Ai +V

(iO)

^^2^
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or. more convenii-ntlv, us

in wliicli the secoiul term represents the excess of the full dividend

uhioh the purchaser will receive at the end of the half-year over the

a})prLiximate interest ou his invested capital for th ol'a half-year. As

inconie-ta>: will be deducted from the full dividend, although from the

purchaser's point of view only part of it represents interest, both fj and /

should be taken at net rates after deduction of tax.

19. In the United Kingdom the prices of marketable securities are

usiuilly (juoted inclusive of accrued dividend. To this rule, however,

there is one important exception. In the case of Indian ilupee Paper

the purchaser has to pay, in addition to the market price, the

interest accrued from the last dividend-date to the date of purchase.

American and other securities, moreover, are often oH'ered for

sale in this country either at a specitied price plus accrued

interest, or on a "yield basis," i.e., to yield some specified rate of

interest. In the latter case, if A,, rej)resent the value of the security, to

A'ield the specitied rate—say j per annum convertible half-yearly—just

after payment of the last half-year's dividend, then the correct price

m-l
1 . . . ^ f j\ '"

- th of a half-vear before the next dividend date would be A„( 1 -h ~ )

VI
"

V 2/

In practice, however, various approximations are used, and as these have

the sanction of custom, it will generally be advisable to ascertain the

particular approximation employtd ]>y the firm offering the security in

t|uestroii, and to consider its ertict on the ] trice. For example, the

1)1 — 1
addition to Ay of — tlis of the current lialf-vear's dividend less

in

siuiide discount thereon for th of a half-vear at rate '—an apjiroximation

sometimes employed—may give rise to an ajipreeiable error if there is

nmch ditference between // and /. Tiie most u.--ual method, however,

seems to be to add to A^ - - ths of a half-vear's interest at rate '- less
111

' '1

snnple discount thei-coii at the t-ame rate for the remainder of the

half vear, which give.^ a price of Ayf 1 -|- - -

' -— )
as against
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A f
14- 'L ''-

1- . . . ), so that the error resultinj^ from this

\ m 2 2/» 'iiin J

approximation is small. In tht- case of a foreign security the use of a

net rate, to allow for British income-tax, would not be practicable. An
expedient sometimes adopted just before the end of the half-year (when

the usual basi-< would entail an appreciable loss to a purchaser in tlie

United Kingdom) vi to purchase the security ex interest. If the

practice of the purchaser paying accrued interest were adopted generally

in tlie United Kingdom it would seem dei^irable that it should be based

on the net rate.

20. When a redeemable security is bought to pay a rate of interest

differing from the ratio of the dividend to the redemption price—that is,

when it is bought at a premium or discount on the redemption price—

a

question arises as to how it should be dealt with on an investment basis,

in order that the required rate of interest may be realized and that the

invested capital may be gradually written down, or up, to the redemption

value of the security. In the case of securities dealt in on the Stock

Exchange the plan very frequently adopted is to debit the account for a

given security with the market-value of the security at the beginning of

the year or half-3'ear, to credit it witli dividends received and with the

market-value of the security at the end of the period, and to determine

the interest for the period by balancing the account ; this method may

be expected to approximate roughly to the theoretical method of

procedure, and it has the advantage of obviating any risk of a security

being valued, as an asset, at a price exceeding its market-value.

21. It may, however, be considered desirable to deal with securities

of this nature independently of the more or less accidental fluctuations

of Stock Exchange quotations, and there are, besides, many such

securities which are not publicly dealt in. A diflerent method of

procedure must then be adopted. It has been shown in Art. 10 that

when a redeemable security is bought to pay a rate of interest differing

from the rate of dividend, the premium paid for the security over and

above its redemption value, or the discount at which it is obtained, is the

present value of an annuity of the excess of the rate of interest over the

rate of dividend, or vice verm. It follows, therefore, that a possible

method of procedure would be to construct a schedule for this annuit}-

in the manner explained in Chapter IV ; the principal-repayments would

represent the amounts to be written off, or added to, the invested capital

at the end of each interval, and the periodical dividend decreased or

increased by these amounts would give the interest for each interval.

o
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Thus, in tlie case of a debenture for 100 redeemable at i)ar in 10 years,

bearing interest at 5 per-cent payable half-yearly, and bought to yield

4 per-cent convertible half-yearly, the premium of 8"17G paid by the

purchaser would represent the value of r.a^ at the effective rate 02.

The successive principal-repayments in the case of this annuity will

be iv^, Iv^^, &c.—all at 2 per-cent—that is, '3365, -3432, &c. These

are the amounts which must be written ofi' half-yearly from the

purchase-mone}"^ of 108"176, and the balance of the dividend available for

interest will be 2-1G35 for the first half-year, 2'15G8 for the second

half-year, &c., which will be found to represent, as they ought, 2 per-cent

on the amount of capital outstanding at the beginning of tlie first,

second, &e., half-years.

If the debenture had borne interest at the rate of 3 ^^er-cent and had

been bought to yield 4 per-cent, the purchaser would have obtained it at

a discount of 8 176, which again represents the value of io-To at 02

effective. The principal-repayments contained in the successive payments

of the annuity, must in tlii.* case be ivvitten on half-yearly to the

purchase-money, and the interest for each half-year will be found by

adding to the dividend the amount written on to capital at the end of

the half-year.

22. It appears, therefore, that the amounts by which the capital

invested in a redeemable security should be periodically written up or

written down, as the case may be, could be asceitained by constructing a

schedule showing the ])rincipal and interest contained in the successive

payments of an annuity of the difference between the dividend and the

rate of interest required to be realized. But the same result may be

more directly attained on a book-keeping basis by debiting the securit}'

from interval to interval with interest at the recpiisite rate on the capital

outstanding at the beginning of the interval, crediting it with the

dividend, and writing the difference on to or off the capital according as

the interest is > or < the dividend. If a schedule be required to check

the accuracy of the entries, it may^ be constructed at the outset by a

similar method. For example, the schedule in the case of a debenture

for 100 redeemable in 5^ years at i)ar, bearing interest at G per-cent

payable half-yearly (the next payment being due three months lience),

and bought to yield 4 per-cent convertible half-yearly, will be as

follows:



Arts. 21-23.] INCIDENCE OF INCOME TAX. 83

^ J r. -.1 10S-9S3 + 3000 ,_„„
Invested Capital = -— = 110-874.

Hall'-Year
No.
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Consider, uow, the ease of an 7?-year dehonture of 1 redeemable at

par, bearing interest At
ff

per unit, jiayable half-yearly and bought at a

premium of k per unit to yield rate j convertible half-yearly, subject to

income-tax at the rate of t per unit. Each half-yearly dividend may be

/
divided into two parts—both subject to tax—namely, '-

, which represents

interest on I at rate ^ convertible half-yearly, and ^(.7— /), which

represents the half-yearly ^jayment to liquidate the premium of k with

interest. Now the former, after deduction of tax, represents interest

less tax on 1, and the value of the latter, after deduction of tax, to yield

j convertible half-yearly subject to tax, is the same as the present value

j . . •

to yield the effective rate '- subject to tax, of a 2H-year annuity ot

\{g—j), the whole of each payment being chargeable with tax. Hence

the present value of the debenture under the specified conditions will be

i-fKi-0(y^)«Wi (20)

where the dash denotes that the annuity-value is to be calculated at the

effective rate (1-0 |-

As an example, let it be re<iuired to find the value at 4 per-cent con-

vertible half-yearly, subject to tax at 1*. in the £, of a debenture for 100

redeemable in 10 years at par, and bearing interest at 6 per-cent payable

1 — (lOlO)"-*^
half-vearly. Here t=')ii, ^^OG; /=-0i: and a';T,'= ^^ —

which=lG'510. Hence the required present value— 1151584. If the

fact of income-tax being chargeable on the entire dividend be left out of

account, the present value would be [1 + '01 x «io°] X 100 whieli = 116-3ol

It will be seen, therefore, that the adjustment is of some practical

importance.

24. Tlie investigations of Arts. 5 to 23 have been limited to

securities redeemable in one sum, but they may be extended, by a simjde

generalization, to securities redeemable by any fixed instalments and

bearing interest at a fixed rate on the outstanding instalments.

This follows at once from the fact that any such security nuiy be

considered as consisting of a number of separate securities each of

which is redeemable in one sum. As an example of the method of

generalization it will bu suQicieut to consider the fundamental problem

of valuation.
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Li't C), C), . . . C,. renresLMit llie successive instalments by which

the ]iriucipal is to be redeemed.

„ III, ^'2) •••«»• M tlie respective numbers of years at

the expiratiou ot" wliieli the successive

instalments become payable.

„ K), K2> • • • ^^r „ the present values, at the valuation.

rate of interest, of Ci due «i years

hence, etc.

,, ff „ the fixed rate of dividend to be i)aid

on the outstanding instalments.

„ Aj , Ao, . . , A^ ,, the present values, at the valuation-

rate, o£ the separate instalments with

the relative dividends.

Assume the dividend to be payable ^? times a year—the next

dividend bein<r due -th of a year hence—and let it be required to IJnd

J'

the value of the entire security at the effective rate /.

Then, by formula (2),

A,= K, + -^(C,-K,)

A,=:K2+,'^(C,-K,)
Jip)

A,=K,.+ /-(C,.-K,)

Hence, by addition, if A, K, and C, respectively, be written for

(A, + A2+ . . . +A,.), (K, + K,+ . . . +K,), and (0, +^+ . . . +CV),

A=K+^(C-K) (21)
JiP)

where C represents the total capital repayable, K the sum of the present

values, at the valuation-rate, of the successive instalments of C, each

being discounted for the period to elapse before it becomes payable, and
A the present value, at the valuation-rate, of the total security.

25. The advantage of the algebraical transformation by which
formula (2) is obtained from formula (1)—or, by which, in other words
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the present value of the dividend is expressed in terms of the present

value of the capital repayable—becomes very apparent in connection

\vith securities under which tlie principal is repayable by instalments

instead of in one sum. In such cases, if it be necessary to value the

several instalments with the dividends thereon by individual calculation,

a considerable saving of labour will obviously be effected by expressing

the value of the dividends in terms of the value of the capital repayable,

while, if it be possible to find algebraical formulas for the sum of the

present values of the successive instalments and the sum of the present

values of the dividends, the expression for the latter sum will generally

be found to be much more complex than that for the former. For

example, let it be required to find the present value, at the effective

rate /, of a debenture for 1 redeemable at par b^- equal annual instalments

spread over t years and bearing interest, payable cuinually, at rate g on

the amount from time to time outstanding. The value might obviously

be written in the form

T T

= ^
• «<"!

+ f [''^il-«^(I«)tTl]

which would involve the evaluation of an increasing annuity.

By means of formula (21), in which K will = -aj] and C will = ].,

the result is at once obtained in the simple form

28. Formula (21) may be established by general reasoning precisely

similar to that of Art. 6. If the dividend were payable p times a

year at rate j^p^ per annum, the present value of the whole security,

to yield the nominal rate j,^,, i.e., to yield the effective rate t,

would obviously be C, and the present value of the dividends aloiu'

would consequently be C— K. But the dividends are actually at

ratey payable;; times a year, and their value by simple proportion will,

therefore, be -:^(C— K), Hence, the value of the entire security is

K+^(C-K;.
JiPi
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27. The iiisthod of repayment by fixed instalments has been

extensively adopted by foreign governments in connection with their

loan-issues. In such eases interest is nsually payable halC-ycarly, and

the general valuation formula will take the form

K+-^- (C-K), or K + -^(i+,^(C-K).
J' I-')

^'

As an example, the Ciiinese G per-cent Gold Loan of April 1885 may be

taken. In this case it was provided that interest should be paid half-

yearly on 1 January and 1 July, and that the principal should be repaid

at par by annual drawings in 15 approximately equal annual instalments,

of which the fir.st was paid on 1 July 1001. Let it be required to find the

price per-cent at which a syndicate could have taken up the entire loan as at

1 July 1895 in order to realize interest at the effective rate of 5h per-cent.

Here K=: ^— (t-«+ f"+ . . . +V^) at 5^ per-cent

= ^(«2o;-«5|) =51-201

C = 100

ff(l+ v^rn) = -OG(l+ yi055)= -12103

Hence the required price per-eent=51-201 + 1-1057 X 48-799=:105-158.

Another example, of a rather more complex character, is afforded

by the French 3 per-cent Kedeemable lientes. This loan originally

consisted of 175 series, redeemable by annual drawings at par, as follows:

1 series in each of the years 1879 to 1907

1908 „ 1925

1920 „ 193S

1939 „ 1945

1910 „ 1950

li)5l „ 1953

Interest is payable quarterly on 10 January, April, July, and October.

On the assumption that the series drawn for redemption are paid off

annually on 16 April, let it be required to find, on the basis of an

effective rate of 3^ per-cent, the capitalized value per-cent of the entire

outstanding balance of the loan as on 16 April 1915.

Forty-five series having been paid off in 1879-1915, there remain 130
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series outstanding to Le re])aid as shown above. Hence, if C be taken

as 100,

the numerical value of which must be calculated at 3'f per-cent-

By Table IV, 6^-, at 3^ per-centr= 125017

fl'i^ ,> » = 8-317

«:r = 15020

n-^ „ „ =18-392

a^ „ .. -20001

132330

100
whence K= :;— X 62717

130 _
and, by Talde VII, /- at 3^ per-cent= 101303.

J (4)

ileuce the required value ])cr-cent

= 48-244+ *''^ X 1-01303 x51-756=93-l81.
•03o

28. It should be carefully noted that the values found in the

examples given in the last article are in both cases values ot" the entire

loan per-cent, not those of individual bonds for 100. It is not possible

to value a loan redeemable by drawings, otherwise than as a whole—
except as a matter of average—because the value of any given bond -will

depend upon when tliat ]iarticular bond may happen to be drawn for

rejiayment. For instance, in tlie case of tlie Chinese loan discussed

above, it has been shown that the value of the whole loan, as at 1 July

1895, to i)ay 5.v per-cent, would have been 105- 158 per-cent, but the

value of any une of the bonds which was drawn for repa3'ment

in 1901 would have been only 100i;''-|-6-0815r7^ at 5^ per-cent, or
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102-905 ; whereas the value of a bond which remains outstanding until

1015 would be 100«-'o+ 60S15rt-7o , or 106019.

Inasmuch, however, as bonds forming part of a loan redeemable by

drawings are frequently bought—as an investment with an element of

speculation—at a price i)roportionate to the value of the entire loan, it

becomes a matter of some interest to determine when any given bond

should become rejKiyable in order that it may yield the same rate of

interest as the entire loan. Let the symbols K, C, and g refer, with the

usual significations, to the whole loan, let Ci be the capital repayable

under the particular bond, and let n be the number of years that should

ohipse before this bond is drawn for repayment in order that it may

yield the same rate of interest

—

i say—as the whole loan. Then the

value of the particular bond will be 011!"+ ~ (Cj— Ci?;"); and tlie value

of the entire loan is K+ V (C— K). Then, since the price given for tlie

particular bond is, by hypothesis, proportionate to the value of the entire

loan, it follows that

Ci;" + •? (C-C«'0 = K + •? (C- K)

whence Cy"= K.

It apjiears, therefore, that «r=the equated time, at the rate of interest

required to be realized, for the several instalments by which the loan is

redeemable. Thus, in the case of a loan standing at a premium, any

particular bond will yield a lower or higher rate than that yielded

by the loan as a whole, according as it is drawn for repayment before or

after the equated time for the outstanding instalments, while in the case

of a loan standing at a discount tlie converse will hold.

29. Another method of repayment frequentl}' adopted by foreign

governments—and also by some commercial companies— is that of the

cumulative or accunmhitive sinking-fund. A loan is said to be

redeemable by a cumulative sinking-fund when a fixed sum is periodicaliv

applied to the service of the loan—that is, to payment of interest and to

repayment of principal by drawings, purchase or otherwise—so that the

t«um available for repayment of jDrincipal is increased from time to time

bv the interest that would have been payable on the repaid portion of

the principal if it had been still outstanding. Tlie only case that it is

necessary to consider is that in which tlie sinking-fund is applied to
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redeem the loan by drawings made at regular intervals. In this case, if

the periodical drawings take place with the same frequency as that with

which interest is payable, the transaction simply takes the form of the

repayment of principal and interest by an annuity. Let C be the

capital repayable, g the rate of dividend per annum, payable half-^-early,

reckoned on the capital repayable, z the rate of sinking-fund per annum,

payable half-yearly, also reckoned on the capital repayable, and j
convertible half-3'early, the rate of interest on wliieh the transaction

is based. Then the sum to be applied half-yearly to the service of the

loan will be \{g-\-z)Q,, and since the principal of C, with interest at

rate g payable half-yearly, is to be liquidated by an annuity of (y+ ^)C

payable half-yearly, it follows that, if n be the number of years which

will elapse before the whole loan is repaid,

C= ^(y+ 2;)C . fl'o^ at rate \q ,

whence lr=i(y + r)

-(.+ -)(!+ f)

4.7

— 2J»

and nJ^^kl^zl'^l
2log(l+0

Now from the point of view of the lender the security consists of an

annuity of (y-f ^)C per annum payable half-yearly for this term of

n years. Hence its value, to pay j convertible half-yearly, is given by

the formula

A=K^+ ~)C^.T.iat rate
I

_^g.j^ at rate \j

«.,-; at rate \g

where n has the value obtained above.

30. In practice tlie drawings usually take place yearli/ and interest is

payable half-yearly ; but no allowance is made for interest on the first

half-year's interest in finding the balance available out of the fixed annual

sum, at the end of each year, for repayment of principal, so that the

operation of the sinking-fund is exactly the same as if interest were paid

yearly.
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Let the capital repayable be, as before, C, and the rate ot" dividend g
payable half-yearly ; let the cunudative sinking-fund be z per unit

jiayable yearly, and let it be rc'inired to find the value o£ the wholu loan

to yield the elleetive rate /. Then the fixed annual sum ai)plied to the

service of tb.e loan will be {g-\-z)Q, and if n be the number of years in

which tlie loan will be entirelv recieenicd

whence

C— (^-t-~)LV/,7, at rate y

log(y-fr)— log2;

log (1 +y)

and, ^ince the amount payable for repayment of principal increases each

year by (j times the capital repaid in the preceding year, the amounts of

principal drawn for repayment at the end of the 1st, 2nd, 3rd, &c., years

will be zQ, zC{\-rg), zC(l-ry)-, &e. From the investor's point of

view, therefore, tlie security may be regarded as a loan of C repayable by

annual instalments of rC, zC{l+g) . . . zC{X-\-g)'"'~^ with interest at

rate y pa^'able half-yearly. Now the present value of the capital

repayable to yield the effective rate i

= r.2C + f-^C(l+y)+ . . . +t-"rC(l+y)"-'

zV

+9
^-9

rt'ri at rate i' where *'=
1+y 1+y

or .s-"- at rate i" where i"=- -.

Hence, by Formula (21), tlie present value of the loan

v>— ::

—

—
; S „ I

(23«)

(23^)

the former expression being applicable when i is >g and the latter wlien

g is >i.

Or, since (y + c')rt^, at rate //, —1, whence (1+y)":

present value of the capital repayable uuiy be expressed as

1

// + -

, the

vzQ
l-.(l+y)

or C-
{g±z)c^

I —

a
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-o that the present value of the loan takes the form

^
z-{^ + z) v>' ^ g c-c ] . . . (23c)

Or, again, {see J. I.A., vol. xlvii, pp. 96-97) the value n:ay be written as

,«-,
,

\/l+?;— 1/^^ ^a:^

«,T1 ^(*-.9) V <7K

Here the tirst term represent.s tlie value of the loan on the basis of

interest being payable yearly, and the seeond the additional value due to

the interest being in fact payable half-yearly. For purj)oses of numerieal

calculation Formula (23t?) would appear to be the more convenient when

the value is required to yield an effective rate, and Formula (23c) when

it is re<]uired to yield a nominal rate pav'able half-yearly.*

In the foregoing solution it has been assumed implicitly that n is

inieqrn]. This will be the ease if the term of jears over which the

drawings are to e.^ttend has been settled first, and the cumulative siidving-

fund has been calculated accordiiigly. But in the more usual case, when

the amount of the sinking-fund has been fixed in the first instance, saj'

at 1 or 2 per-cent, the value of n will not, as a rule, be an exact integer,

and will be equal, say, to n' -\-J\
where n is an integer and f a proper

fraction. In this case the capital repayable in the tirst ri years may be

valued in the ordinary way, except that C(y+ c)(777| must be substituted

for C, and to the result thus obtained must be added the value of

^W — (.y + ~-'^'iri] i"fpayable at tlie end of ?i' -f I years.

Tlie Chinese Gold Loan of 1896 bears interest at 5 per-cent payable

half-yearly, and is I'edeemable by annual drawings spread over 36 years.

What would have been the value of the loan per-cent, at date of issue, to

pay o^ per-cent ellective ?

^m;1 'it o per-cent =16'547
;
and at 5^ per-cent 15o36

Vl 050-1 ,,,,,.
and -Oo x , - . _ — = -13006.

2(0.)o— Uo)

Hence it will be found that the required value =i93S9U-|- •829= 9 i719.

It will be observed that in the above example the value of the loan

has been found as at the date of issue, but j)recisely the same method

will be ap])lieable to a valuation at any annual date during the currency

of the loan, except that the cunmlative sinking fund must be taken as

the ratio of the sum applicable to repayment of ])rincipal at the next

annual drawing to the amount of principal outstanding at date of

valuation.

* For aiipioxuii lie I'Driiiiilas .vet; J. I.A , xlix, ]i. liOO.
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31. It may here hv mentioned that in the case of a h)an repayable

by drawings by means of a cumulative sinking fund, the schedule

showing the operation of the sin icing fund would differ slightly from the

ordinary rejiaynient schedule for a loan repayable by a terminable

annuity, owing to the fact that only an integral number of bonds could

be repaid at each drawing. The necessary adjustment may be easily

made by carrying forward the unapplied balance from each drawing to-

the next following drawing. Thus, in the case of a 5 per-cent loan of

1,000,000 in 10,000 bonds of 100 each, repayable at par in 30 years by

annual drawings by the operation of a cumulative sinking fund, the total

amount to be applied annualh' to the service of the loan would be

——^— at 5 per-cent, or 65,051'44, and the schedule showing the-

number of bonds to be drawn for repayment each year would be as-

follows:

3

4
&c.

1.000,000

*30l

(1 + 0"-^

15,031- 11

15.80101
16,594-21

17.423-92

Amount available
for «lli Drawiii"

15,031-44

13,835-45

l(>.n49-fi(;

17,473-5S

Xumber of Bond;
Reiiui.l

at )ith Drawing

150
158
IGG
174
&c.

Balance
Forward

51-44

5513

73-58

Or, a full schedule, sliowing the interest and drawings for each year^

might be constructed in the following way:
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foot of principal and interest are G5,0U0, 05,050, 05,000, 05,030,

05,000, &c., instead of G5,051'4!4< each year. This, however, would not

make any appreciable difi'erence in the value of the loan.

32. In the foregoing discussion of the subject of loans repayable

by instalments, it has been assumed throughout that the principal is

to be repaid in some deBnite way. It may, however, often happen

—

apart from any question of default (a contingency which docs not enter

into the theory of the subject)—that the borrower has power to suspend

or increase the sinking fund, or other provision for redemption, at his

option. In such cases theoretical methods of valuation would have to

be employed with caution. In fact, in every case the precise terms of

the contract must be studied, and due consideration must be given to all

their bearings on the problem of valuation.

One case which may be specially mentioned is that in which the

borrower reserves the option of purchasing bonds in the market

instead of redeeming at par. Such an option is of course material

only when the price would normally be below par, and when there

is a free market in the bonds— that is, when they are not wholly

or largely held by a single investor, or by a number of investors

acting together, who can stand out for redemption at par. The

problem, therefore, to be considered is that of the valuation of a

comparatively small j^ortion of the loan to yield a rate greater than g.

It is possible, or even probable, that as the term of repayment draws

to an end the borrower maybe compelled, owing to the restriction of the

market and the consequent rise in price, to redeem at par, but the only

safe course to adopt in valuing a small amount of the loan would appear

to be to assume that it will be redeemed at par at the end of the term.

It is necessary, however, to distinguish between two cases. If the

amounts to be cancelled annually, by di'awings or purchase, whether on

the cumulative sy&tem or otherwise, are fixed, then n will also be fixed.

But if a cumulative sinking-fund of fixed amount is to be applied

in redemption of the loan, the value of n will dei)eiul on the prices

at which the bonds are purchased for cancelment. In this case it seems

reasonable to assume tliat the bonds will be purclia-^ab'e at prices

calculated to yield rate i— or in other words that the sinking fund will

be annually invested in the loan at rate /, so that zs,^ at rate /=1. In

each case the value of the loan per unit, if the interest at rate g be

payable half-3'early, will be 1— (*'~y*r)^,7i-
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33. The mctliod of gradually writing down or writing up a

redeemable security to its redemption price lias been discussed in

Art. 20—22 for the case of a security redeemable in one sum, and an

identically similar process will obviously apply to a loan redeemable

by instalments, or, in fact, as stated in Art. 15 of Chapter IV, to

any series of payments. As an alternative metliod, in all cases, the

security may be kept at its purchase-price until redemption, or during

an}' other period, and tlie sinking fund for writing the capital value

up or down may be c.irried to a separate account. But if that course

be adopted, the sinking fund must be accumulated at the rate of

interest realized on the purchase price of the security ; otherwise there

will be a discrepancy between the accumulations of the sinking fund

and the sum required to write down, or write up, the capital value of

the security. It may hajipen, however, that an investor desires to

realize a certain rate of interest on his original invested capital until

redemption, and to accumulate his sinking-fund at some other rate.

This suggests the question. What price should be paid for a security

to yield the investor a given effective rate, i' say, on the purchase-money

until redemption, and to admit ot" the accumulation of the sinking-fund

at some other rate i ? The question is the same as that discussed in

Chapter IV, Art. 16, e.^cept that in the present instance it is assumed

that the remunerative rate i' is to be realized on the original invested

capital only, and that the sinking-fund, whether to write down or to

write Tip the original capital—that is, whether positive or negative— is

to be accumulated at the reproductive rate i. Hence, by Formula (12)

of Chapter IV, if A be the present value of the security at rate i and

A''*^' its value on the special basis,

A--^i^or—..^. . . (24)

where n is the term over which the security extends.

This result is quite general on the conditions stated, but it will seldom

be applicable in practice except in the case of a security bought at

a premium, in which case an investor may desire to replace the premium

by investing the excess of the periodical dividend over the interest on

his capital in securities yielding a lower rate.

Consider, for example, the case of a debenture redeemable at par in

n years and bearing interest at rate g payable annually ; and assume

that the investor desires to realize interest at rate i' on the purchase-
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money. If y is >i', the debenture will be bought at a premium, and its

value to admit of the purchaser replacing the premium at redemption by

a sinking-fund invested in securities yielding rate i will be correctly

iriven bv Formula (2-4) as 7-"
. The annual interest on this at rate t'

will be i'

.

— —,— , and the balance o'f the dividend, namely, q— i' '—r^ .,

l + '-v-i'
''^

! + /'*„.

q—i' ...
or — r- , if invested and accumulated for n vears at rate /, will amount,

1 + 1 s-\

on the redemption of the debenture, to -^ r,
—-

, or -— 7-^^ 1, which
1 + » s,71 1 + i 6-,7|

will exactly replace the premium paid by the purchaser. If, however,

i' is > q, the debenture will be bought at a discount, and the annual

dividend will be insufficient to meet the interest. In this case the

formula -~^ would correctly represent the value of the debenture if

1 + i *Ti

the pui'chaser desired to realize some other— usually higher— rate z on

the capitalised balance of his interest. But as a rule he will be content to-

realize i' on his ivholc invested capital (including the capitalized interest).

and in that case the value will be -,--^ or 1— {i'— q)a'n\-
1 + J s

,,
I

34. Many problems arise in practice in connection with the

conversion of securities and the consolidation of loans. The fundamenta)

principle to be observed in transactions of this nature is that the

converted or consolidated security should be equivalent to the old

security. Hence, ajiart from any special circumstances which might

render it proper to value the new and old secm-ities at diflerent rates

of interest, the procedure in all cases will be in the first place to fix

the rate of interest upon which the conversion or consolidation is to

be based, and then to so adjust the terms of the transaction that the

new security shall be equivalent, at that rate of interest, to the security

which it replaces. In the case of the conversion of a marketable

security, the rate of interest to be employed should be such as to leave

the market value unaltered, and it would, therefore, be determined by

ascertaining the rate of interest yielded by the old security on its

market price; in other cases the rate to be employed would have to be

determined by reference to the rate obtainable, at the time of conversion,

on similar securities.

The following examples will sufficiently illustrate the subject—

•
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(a) A security quoted at A per-cent, and yielding at that price

rate / convertible half-yearly, is to he converted into

debentures bearing interest at rate g payable half-yearly

and redeemable in n years at par. What amount of

debentures should be given for each £100 of the existing

security ?

If X be the required amount, then since the new security must

be equivalent at rate^ to the old

where a.j,^- and v"-'^ are calculated at rate \j^

A
whence X=:

^^\i9-J')"Tn\

On comparison of the result with Formula (24) it will be seen

that the problem is identical with that of finding the value

of the security to yield y per animm payable half-yearly for

n years and to admit of the ditference between A and X
being written on or off by the accumulation of a sinking-

fund at rate^' convertible half-yearly.

(fc) A company proposes to convert its existing debentures,

bearing interest at G per-cent payable half-yearly, and

redeemable at par in 5 years, into an equal amount of

debentures bearing interest at ^\ per-cent paj'able half-

yearly. On the assumption that the existing debentures

are quoted at a price to pay 4 per-cent convertible half-

yearly, when should the new debentures be redeemable ?

Let n be the number of years at the expiration of which

the converted debentures should be redeemed.

Then 1 + (-03 --02)010 = 1 -|- (-0225 - •02)«.i;^i where the

annuity-values are to be calculated at 2 per-cent.

•01
•'• "in\ = 7i7T;^-«ro =35-93.

On reference to a 2 pcr-c-Liit annuity table it will be found

that flo4l=35-92.

Hence the new debentures should be redeemable at par in

32 years.
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(c) A borrower has obtained at different times three loans of

£5,000, £2,000, and £4,000, repayable with interest at the

respective rates of 5, 4^, and 4 per-cent, convertible half-

3-early, by annuities payable half-yearly on 1 June and

1 Decemher, each annuity having been originally for a term

of 30 years. He proposes to consolidate the loans as on 1 June

1900, when 20 instalments remain to be jiaid in respect of tho

£5,000 loan, 25 in respect of the £2,000 loan, and 35 in

respect of the £4,000 loan, into a single loan repayable

with interest by a single terminable annuity paj'able half-

yearly from the following 1 December, and he desires to

know (i) what annuity he would have to pay in order

to redeem the consolidated loan in 15 years
;

(ii) what

would be the term of the annuity if he were to pay

a half-yearly instalment equal to the sum of the annuities

at present payable in respect of the existing loans.

It must be assumed that the borrower is not entitled to pay off

the loans otherwise than by the stipulated annuities, otherwise he

would have exercised his right to pay off the balance of the 5 per-cent

loan when obtaining the 4| per-cent loan, and similarly to pay o:ff the

balance of the 4^^ per-cent loan when obtaining the loan at 4 per-cent.

The first point to be decided will be the rate of interest at which

the consolidation is to be effected. Let it be assumed that 3^ per-cent

convertible half-yearly is now obtainable on similar security, and that

this rate is to be emploj'cd in the calculation.

The half-yearly payments in respect of the thi'ee loans will be as

follows

—

For the £5,000 loan ' _ at 2^ per-cent, or 1G1'7G7

2 000
„ „ £2,000 „ ^— „ 2i „ „ G1071

4 000
„ „ £4,000 „ -i-- „ 2 „ „ 115072

«60|

Hence (i), if X be the half-yearly amount of the consolidated annuity

for 15 years,

X.fl3^,= 161-7G7rt2^ + Gl-071»:^ + 115072fl'35l

where all the annuities are to be taken at 1|- per-cent, whence it will
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be found tluit X= 2US-1) apiiroxiinutely. And (ii), if n be the number

of years in wliich the consolidated loan would be redeemed by a half-

yearly payment of IGlvG? + 01071 + 115072, or .337-910,

337-910 x«o7Il= 101-7G7aooi + 61-071«^, + 115-072rt§31

where again all the annuities are to be taken at If per-cent, from wliich

it will be found that w= 12-815 nearly. This means, of course, that

25 half-yearly payments of 337'910 would be payable and that a

final fractional payment would have to be made at the end of 13 years.

The result obtained in answer to the second part of the question

may be defined as the equated term of the three annuities on the basis

of the consolidated annuity being equal to their sum. It will be found

to be slightly less than the result obtained by multiplying the several

annuities by their outstanding terms and dividing the sum of the

products by the consolidated annuity. It may be shown generally that

this must always be the case. For let there be any number of annuities

of Ki, Ko, K3, &c., for «i, iio, ??3, &c., years, and let n be their equated

term on the basis specified.

Then o^ x 2K=Kiff^+ K2ff,g + &c.

1 — t-" ^.,. .,. ! — ?;». ^, l — v»2— -SK^Ki :— +K,—— +

t)».:SK=f«.Ki + y»2K.j+

whence it appears that n is the equated time for sums of Ki, Koj &c.,

due ni, Uo, &c., years hence.

Now it has been shown in Art. 9 of Chap. II, that the true

equated time is < the result obtained by dividing the sum of the

products of the amounts due and their respective times by the sum of

the amounts. Hence it follows that the rr/nated term of any number
of annuities, on the basis of their being replaced by a single annuity

equal to their sum, is < the result obtsiined by dividing the sum of the

products of their periodical payments and their respective terms by the

sum of the payments. The latter will, however, be a rough approxi-

mation to the true result, provided the terms of the given annuities do

not diftier greatly.

As the problem of the consolidation of loans repayable by annuities

often arises in practice in connection with loans raised by local authorities

it may be mentioned that the consolidation of such loans by the method

n 2
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discussed above, i.e., by substitution of a single loan repayable by an

annuity equal to tbe sum of the annuities b}' whieb tbe original loans

were repayable, would not in general meet the requirements of tbe Local

Government Board. By regulation issued under tbe Public Health Acts

Amendment Act, lOOS, it is provided that regard shall be bad " to tlie

amounts of the several loans and the periods allowed for the payment off

of such loans." Xow it is obvious that the general equation

Kfl'^l= 2^1^,77! admits of any number of solutions if both K and n

be regarded as unknown quantities. In practice, it is considered that

the regulations quoted above would be complied with by imposing

the condition «K= 2«iKi, i.e., hx making the total pa\-ments in respect

of the consolidated loan equal to tbe total outstanding payments in

respect of tbe existing loans. On this basis the equated term ot

the several annuities would be given by the equation

If X be written for tbe right-hand expression (in which all the quantities'

are known) the equation becomes a-;p^^n\ whence

and 8= loge(l— »?,\)

i^\? z3/\3= i\-\-n -^^n--— + . . .

whence n may be calculated to any desired degree of accuracy by

successive approximations. The second approximation

_ 6(8-?A)

'^~iX{U-i\)

will be found in many cases to give a lair result. But for practical

purposes the appropriate value of n—and thence the corresponding value

of K— will of course be obtained by inspection of a table of — '.

n
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CHAPTER VI.

Ox THE Determination of the Rate of Intekest involved

IN A GIVEN Transaction.

1. In the preceding chapters, methods have been investigated for

<letermining the present value or amount of a given series of payments,

or the terms of a given transaction, on the basis of a specified rate

of interest. In the present chapter, it is proposed to consider the

converse problem of determining at what rate of interest a given series

of payments would have a given present value or amount, or, more

generally, the rate involved in carrying out any given financial

transaction on specified terms. This problem will obviously reduce in

all cases to the solution of an equation for i, or j, or S, as the case may

be. For since the successive payments of the given series, or the terms

of the given transaction, are assumed to be given, it follows that an

equation may be obtained by finding an algebraical expression, on the

basis of an assumed rate of interest i, j, or 8, for the present value or

amount of the given series, or for some one of the quantities involved in

the given transaction, and equating the result to the given present value

or amount, or to the known value of the quantity in question. In this

equation the assumed rate of interest will be the only unknown

quantity, and the problem of determining its value consequently resolves

itself into that of solving an equation for a single unknown. The

equation will, however, generally be found to be of such a nature that

it will be impracticable to obtain an exact solution, and it becomes,

therefore, a matter of importance to consider the special problems that

most frequently arise in financial transactions, and to investigate

convenient methods of obtaining approximate solutions.
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2. At the outset, one consideration of a general nature presents-

itself. Since an effective rate may be converted into a nominal rate

convertible with a given frequency, or vice versa, it follows that it is

immaterial whether the rate involved in a given transaction be

determined, in the first instance, in the form of an effective rate or in

that of a nominal rate. Hence, in any given case it will be most

convenient to assume as the rate to be determined a rate convertible

with such a frequency as will lead to an equation of the simplest

possible form.

For examjile, suppose it to be required to find at what effective rate

an ordinary annuity payable half-yearly for a given number of years

will have a given present value. The algebraical expression for the

present value of an annuity payable half-yearly assumes its simplest

form in terms of a nominal rate of interest convertible half-yearly.

The best course to adopt, therefore, would be to determine, as accurately

as may be uecessar}', the nominal rate payable half-yearly which would

produce the given present value, and then to convert that nominal rate

into the corresponding effective rate. Similarly, if it were required to

find the nominal rate of interest, convertible half-yearly, realized on the

purchase of Consols at a given price, the best plan would be to determine

the yield, in the first instance, in the form of a nominal rate convertible

quarterly—because, the dividends on Consols being payable quarterly,

the algebraical expression for the value of Consols per-cent can be most

simply written down in terms of a nominal rate convertible quarterly

—

and then to convert the result into a nominal rate convertible half-

yearly.

In general, the intei-val of conversion of the assumed rate may be

made the same as the interval of payment in the annuity or other

transaction under consideration. It will be sufficient, therefore, in most

of the investigations that follow, to consider the problem of determining

the effective rate involved in an annuity or other transaction under

which the interval of payment is a year, for, by substitution of an

interval for a year, the resulting formulas will become immediately

applicable to the determination of the nominal rate convertible p time*

a year involved in an annuity or other transaction in which the interval

of payment is -th of a vear.

3. To proceed now to the discussion of the problem. An obvious

method of procedure would be to endeavour to find the unknown rate
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by successive independent trials. Thus, suppose it were required to find

the effective rate of interest realized on the purchase, at the price of

135187 per-cent, of debentures redeemable in 20 years at par and

bearing interest at the rate of 5 per-cent payable annually, or, in

symbols, to find the value of i satisfying the equation

100y2o+5a2o|= 135-187.

Since the premium of 35187 has to be written off out of the dividends

in 20 years, it is obvious that the rate of interest realized will be verv

considerably below 5 per-cent. If 3 per-cent and 2^ per-cent be

successively taken as trial rates it will be found, by actual evaluation of

the expression 100y-''+ 5a-^,, that the debentures would be worth

129-755 per-cent at the former rate and 138-973 at the latter. The

given price lies between these two values, and it is obvious, therefore,

that the required rate lies between 2^ and 3 per-cent. If now

2i per-cent be tried, it will be found that at this rate the value would

be 134'261, which shows that 2t per-cent is slightly above the required

rate. By proceeding to make further trials, it might ultimately be

found that the true yield is 2*7 per-cent. But this method, although

an admissible process lor obtaining a rough idea of the required rate,

would clearly be too laborious for general use, and it becomes necessary

to investigate a more systematic method of approximation. The best

method for general practical purposes is that of interpolation between

two or more trial rates giving nearly correct results, but before

proceeding to discuss this method it will be convenient to refer briefly to

cei'tain other methods which, although not often used in practice, are of

some importance in the history of the subject. It will be sutBcient to

consider the applicability of the various methods to the two representative

problems of determining the rate of interest at which a given annuity has

a given present value or amount, and of finding the yield on the purchase

of a redeemable security at a given price.

4. The first method to which reference may be made is that of

successive approximation by direct expansion of the expression for

the value or amount of the annuity, or for the value of the redeemable

security, in powers of the unknown rate of interest. As a general rule it

is impracticable to obtain a reliable approximation by this method

without considerable labour owing to the fact that the successive terms

in the expansion do not diminish rapidly enough to admit of the terms

after the first two or three being neglected. The terms may even
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increase in value up to a point, in which case it becomes necessary

to proceed to an approximation of a high order to get a good result.

Various devices have been suggested with the object of overcoming this

difficulty in the case of the annuity-vahie, but the resulting formulas

are too complicated or too limited in applicability to be of any practical

use.

5. The objection indicated in the preceding Article to the method of

approximation by direct expansion applies equally to the case of an

annuity and to the general case of a redeemable security or of a loan

repayable by instalments—or, in fact, of any series of payments or financial

transaction in which the annuity-element predominates. There is,

however, one case, involving the annuity-element to a comparatively

small extent, in "which the method gives a fairly accurate result. This

case—which is of sufficient practical importance to repay special

investigation—is that of a debenture or other security bearing a

tixed rate of dividend and redeemable in one sum at the expiration

of a fixed number of years. Let it be required to find the rate of

interest realized on a debenture redeemable in n years, carrying a

dividend at the rate of y per annum (payable annually) per unit of its

redemption-price, and bought at a premium of k per unit on its

redemption-price. Let i be the required rate of interest. Then, by

formula (17) of Chapter V,

kr n^l (n+l)(n + 2) "l
"'

= - 1 —t-] I'— . . . \

n[_ 2 b J

n\_ 2 12 24) J

If the terms involving powers of i above the first be neglected, this

equation gives, as a first approximation,

k

(1)
"fl

,1+ -„— fc

In
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In this formula the numerator = the balance of the year's dividend after

deduction therefrom of -th of the premium paid on purchase, and the
n

denominator

.l[a.;,.(iVi=I.).(i.'i^.>.... (1.1, /,.)].

so that the approximation really amounts to taking the rate which

the purchaser of the debenture would realize on his average invested

capital if he were to write oil" an equal proportionate part of

the premium each year out of the annual dividend and to take the

balance of the dividend as interest for the year. This is not a

theoretically correct way of dealing with the investment, but it is

obvious that, if the term of the debenture were short, it might

be expected to give an average yield differing only slightly from

the true yield. On inspection of the algebraical expansion from

which the approximation is obtained, it will appear that this is the

n—1 .

•case, for if ——t be small as compared with 1—that is, in general, if n

be not large—the value of the first term neglected, namely, —— i%

n-\-l
will be small as compared with that of —t^^-

As an example of the use of the formula, let it be required to find,

without reference to tables, the approximate yield on a bond, bearing

interest at 4| per-cent, payable half-yearly, redeemable in 25 years

at 112|, and bought just after payment of the half-yearly dividend,

at a price of 120. Here the half-yeai-ly dividend per unit of the

7'5
redemption price='02; X-= tt7)T^\ 3,nd «= 50. Hence, by the fornmla,

•02-i.i
50 15 ''S

the approximate half-yearly yield = — — = " = '018053.
_ oi J. 155i

"^loo'is

The true half-yearly yield, to six places of decimals, is '017968. The

approximation is slightly in excess of the true value, and it will be

seen, on consideration of the method by which formula (1) was

obtained, that the effect of neglecting terms involving powers of i

above the first will, in general, be to give to i too large a value
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if k is positive—that is, in the case of a bond bought at a iiremiiim

—and too small a value if k is negative—that is, in the case of a bond

bought at a discount. It must, of course, be borne in mind that the

apphcation of the formula to redeemable securities bought at a discount

will be limited to those cases in which there is a definite contract to redeem

at the expiration of a fixed period. A security, redeemable merely at the

option of the debtor on or after a fixed date, and bought at a discount

on the redemption-price, should be regarded [for a similar reason to that set

forth in Chap. V, Art. 4(iii)] as a perpetuity of the periodical dividend,

and the yield would accordingly be determined by dividing the periodical

dividend by the purchase-price ; for example, the effective yield on a

debenture bearing interest at 5 per-cent per annum, payable annually,

redeemable at 110 on or after a given date at the option of the debtor,.

and bought at 105 would be -

—

- or 4"7619 . . . per-cent.
lOo

6. It has been pointed out that the impracticability of obtaining a

reliable approximation by direct expansion, in powers of i, is due to the

fact that the terms in the expansion do not diminish rapidly enough to

admit of the terms after the first two or three being neglected. Although

the successive powers of i form a rapidly-decreasing series of quantities,

the coefficients by which they are multiplied may increase for a certain

number of terms with equal or even greater rapidity, so that the early

terms in the expansion will not necessarily exhibit rapid convergency.

It is obvious, however, that if the unknown quantity z could be replaced^

in the expansion, by some very much smaller unknown quantity, without

any corresponding increase in the coeflficients, the series would be

rendered much more rapidly convergent, and the error resulting from

neglecting the terms involving the higher powers of the unknown

quantity would be correspondingly diminished. This is the expedient

adopted in a second method of approximation, vhich—with the aid

of interest tables—gives good results with comparatively little labour.

It will usually be found that the coefficients required in the approximation

assume such a form that they can be easily evaluated with the aid of

interest tables. The process will be exemplified by the following.

investigations of the cases of an annuity and a loan repayable by

instalments.
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7. Consider, first, the case of the annuity. Let a be the given

present vahie of an annuity of 1 })er annum payable annually for w years,

let i be the unknown rate of interest, and suppose that, on reference to

a table of the present values of an annuity at various rates of interest,

it is found that at rate i', a,7i= a', which differs by only a small quantity

from the given present value a. Assume that i={'+ p, where p will be

a small quantity—positive or negative—relatively to i'. Then

l_t.« i_(i + j'^_ )-»
a= : = r.

^ I +p

= «'—
T, (a'—wy'""''') + terms involving higher powers of p.

Hence, as a first approximation,

I a'—a -..,., a'—

a

p= i —. r—— and t= t -\-t — —, ... (2)

Similarlv, if the amount of the annuity were given as s, and the value of

Sn\ at rate i' were found to be &•', a quantity diiferiug only slightly from

«, the resulting first approximation would be

A second approximation may be obtained in each case by retaining the
I

term involving p~ and by substituting for p^ in that term pi' -— nWtl+\a — nv

in the one case or pi'-. —
rr;
—

• in the other. But a better approxi-
'^

s'— n(l + iY'^

mation would, in general, be given by repeating the original process^

that is to say, by putting z= i"-j-p', where i" is the first approximation

to i, and finding a first approximation to p' in the same way as for p.

For example, in the case of the present value of the annuity, let

a'— a
i'+i' -. ;—; =*") and let the value of a~[ at rate i" be a".

a — 7it; " + '
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Then for a more accurate approximation,

e=i"+f^^, (4)
a —nv " + ^

To evaluate this expression it would mereh' be necessary to calculate the

values of a" and t;"«+i by means of logarithms. The process may

obviously be repeated until any desired degree of accuracy has been

attained.

8. An alternative method of procedure to that by which formula (2)

was deduced would be to expand — instead of a-^. Then

1 i i'+ p i'+ p

a l-v>' l-(H-i'+ />)-« 1- y'»+ «/:)«'»»+ 1— .. .

a \ I J\ at J

a \_ i\ a J J

whence, as a first approximation,
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Again, - = -05, and b}^ Table V — at 3 per-cent =051010, so that
a a^^

formula (5) gives

001019x03 ^„o.^^2= 03 =-028455
•051019(l-ll-9997 x 051019)

If 028-455 be taken as a new trial rate, it will be found that at this

rate —= -050
''sol

formula to (4),

rate —= -050006 and z;3i= -4.1904. Hence, by the corresponding
''sol

.o.^- -000006 X -028455 ^<., ,,..t= 028455 : = 028416.
•050006(1-12-5712 x -050006)

The true value of i correct to six places of decimals is -028446. It will

be seen, therefore, that formula (5) gives a better result than formula

(2), and tbat the second application of the former gives the required

rate accurately to the sixth place of decimals.

In connection with all such results as those just obtained, it sliould,

of course, be borne in mind that their accuracy to the last place of

decimals must not be assumed without examination of the error due to

the limited number of decimal places in the tabulated quantities upon

which thej-^ are based. The fraction at the foot of page 108, for example,

. , ,
.

(-3996±-00005)x-03 .

should strictly be written
19.^^04± 'OOOOo- (ll-9997^00l5-/ ^"

this particular case, if the extreme values are taken, it will be found that

the result (to the sixth place) remains unaltered. But if a similar

process be applied to the expression given by formula (5) it will be

found that the data only justify the conclusion that the result lies

between -028454 and -028456.

10. In the case of a loan repayable by instalments, the method may

be applied in precisely the same way as in the case of the annuity. Let

it be required to find the effective rate of interest realized on the

purchase, at the price of A, of a loan redeemable by instalments of the

total amount of C, and bearing an annual dividend at the rate g reckoned

on C, let the successive instalments be Cj, C2, C3, &c., repayable

certainly on the expiration of «i, «2, '>H-, <tc-, years respectively; let i' be

a rate (found by trial) which brings out a price not differing greatly

from A, and let i=i'+ p, where p is unknown; also, as in Art. 24 of

Chapter V, let K=Ci2;«i + C.,y"^+ .... Then
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A=K+'4(C-K)

-[c,(i + i'+^)-«.+ ...] + f[i + ,?]"'[c-c,(i+*-'+p)-".-...]

+ terms involving higher powers of p

=K'+|[C-K']-^R(C-K') + (^"-y)(«iC.f''HHi+ . . .)1

+ terms involving higher powers of p

=A'- ^ [A'-K'+ (i'-^)2«iCiy'«. +>]

+ terms involving higher powers of p.

Hence, as a first approximation,

A'-A
^ A'-K'+(i'-^)2«iCij;'"i+'

and i=i'+i'--— — r;=

—

^ ,
.... (0)

where A' and K' respectively denote the value of the loan, and the value

of the capital repayable, at the trial rate /'. As applied to a debenture

repayable in one sum, the formula reduces to

., ., A A ._.

*=' +' A'-K'+(i'-y)«C«'»+i
^'^

As an example of the use of this formula, let it be required to find, as in

Art. 5, the approximate yield on a 4| per-cent debenture, redeemable

in 25 years at 112|, and bought just after payment of the half-yearly

dividend at 120. If -0175 be taken as a trial half-yearly yield, the

values of the various quantities occurring in the formula will be as

follows

:

i'=017o ; A'=112iy'«'+ 2i«'5o:= 12 1-821

A=120; K'=112i«;'^«=4-7-253

j'_y^0175-02= --0025; and «Cy'«+'= 23220

1-821
Hence i=0l7u+ 0170 -——- =-017903

bo" / bi
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This result differs by 5 only in the sixth place from the true value, and

by repeating the process—•0179G3 being taken as a new trial rate

—

it would, of course, be easy to obtain a very much closer approximation.

11. If the trial rate i' be taken =g, then A'=C; {'—^=0; and

formulas (6) and (7) reduce to the simple form

C-A

where K' is to be calculated at rate y. This is a very convenient

formula for a first approximation, as it entails the calculation of only

one quantity, namely, K' ; but it has not, of course, the generality of

formulas (6) and (7). The value of formulas (6) and (7) consists

in the fact that they afford a means of obtaining an approximation to

any desired degree of accuraej^, since the rate obtained by any particular

application of the formula may be used as a new trial rate for the

purpose of obtaining a closer approximation.

Formula (8), applied to the case of the debenture taken as an

example in the last })receding Article, gives

7-5
i=-.-02-02

112-5-41797

= 02-002 122=: 017878

which is not quite so good a result as that obtained, without the

assistance of Interest Tables, by formula (1)

12. A good approximation to theforce of interest— and thence to the

effective or other rate—at which s-| or a-^ has a given value, may be

c*^— 1 X
obtained by means of tables of log and log:; . For s^. and

a-^ are very nearly equal to S:;;rji + i and a„+j|— i respectively,* that is,

e(«-i)5_]^ l_g-(r<,+ i)S

to (n-^)- rr-Y + h and («+ A) . -^ Hence, (n-i)Sm

the one case, or (n + h)B in the other, may be obtained approximately by
^- 1

ji -^ 1-

entering the tables inversely with log "

—

^- or log-^

—

''^. It has been

* Tliis may be seen gra])hically by drawing a straight line to represent the
continuous iumuity and concentiating the total payments for successive years, i—1^,
la-25, &c., at the middle points of these years, i.e., at the ends of 1, 2, &c., years.



112 DETERMINATION OF RATE OF INTEREST. /Chapter VI

shown by Dr. J. F. Steffensen and Mr. N. V. Bertelsen (i\"y^

Tidsskrift for Mathema tile') that this gives sufficiently accurate results

for most purposes, and that very close approximations can be obtained by

a method similar to that of Art. 7.

13. It remains now to consider the practical method of approxi-

mation mentioned in Art. 3, namely, the method of approximation by

interpolation between two or more trial rates giving nearly correct

results. For interpolations based on more than two rates it is

convenient to use Finite Differences or some general interpolation

formula. In practice, however, it is usually sufficient to employ

what is technically called a Jlrst-diff'erence-interpolation—that is, to

interpolate between two trial rates only. An interpolation of tliis

nature—which alone will be considered here—rests merely upon

the simple assumption that the differences between the values of an

interest-function at various rates of interest are directly proportional to

the diffei'ences in the corresponding rates. In the case of a function

involving in its algebraical expression only the first power of the rate of

interest this assumption is strictly correct. For example:

—

The amount of 100 in a year at 2 per- cent is 102

n „ 102-5

3i „ 103-125

4i „ 104-5

and it will be seen, on inspection, that the difference between any of

two of these amounts is directly proportional to the difference in the

corresponding rates ; for instance, the difference of -G25, between the

amounts at 3|- and 2| per-cent, bears the same ratio to the difference of

25 between the amounts at iih and 2 per-cent as the difference between

^\ and 2^ per-cent bears to the difference between 4^ and 2 per-cent.

Hence, if it were required to find the rate i at which 100 would amount

in a year to 102-9, and it were given that at 2 and 4-^ per-cent 100

would amount to 102 and 1045 respectively, the result obtained by the

first-difference interpolation formula,

i--02 102-9-102

-045-02 104-5-102

(which, on reduction, gives i= -029), would be strictly correct.



4rta 12-151 APPROXIMATIOX BY INTERl'OLATIOX. 113

Eat most interest functions are of a much more complex character,

and in sucli eases the assumption upon which the method of first

dilference interpohition rests is only approximately correct. In general,

the smaller the differences between the trial rates and the true rate tlie

more nearly accurate will he the resulting approximation ; for example,

if it were found that a given annuity-value fell between the values at

2^ and 2f- per-cent, a better result would be obtained by interpolating

between these near rates than by interpolating between 2 and 3 per-cent.

In general, also, an interpolation—that is, an approximation by reference

to two trial rates of which one is greater and the other less than the

true rate—will give a better result than an exterpolation—that is, an

approximation based upon two trial rates of which both are greater or

both less than the true rate.

14. The application of the method of first difference interpolation

presents no analytical difficulties, but it will be convenient to deduce,

as in the case of the method of ap^jroximation discussed in Arts. 6-11,

the formulas appropriate to the annuity and the redeemable security.

15. In the case of the annuity, suppose it to have been ascertained

—

by reference to tables or by actual trial—that the given present value a

of an «-year annuity lies between a' and a", the respective values of an

«-year annuity at rates i' and i". Then, on the assumption involved in

the method of first-difference interpolation, it follows that, approximately,

i— i' a— a'

i"— i' a"— a'

whence iz^i' -\-

—

?(»"— *') (9)
a — a

Here, again, as in Art. S, the rrciprocals of the annuity-values

might be used, in which ease the approximate expression for i would

take the (orm

1_1
a

i=i'+ -^—J (^"-O (10)

a

To test these formulas, let a= 20 and « = 30, as before. On reference to

Tables IV and V it will be found that the values of a^ and — are

20-9303 and -OlTrTS respectively at 2^ per-cent, and 19600i and
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•051019 respectively at 3 per-cent. Hence, by formula (9),

t= 03-—~, X 005= -028498.
Lo'ZJJ

and by formula (10),

/=-03-J^ X -005= -028428.

These results are not so good as those given by formulas (2) and (5) , but

then it must be remembered that the difl'erence between 2| per-cent and 3

per-cent—the rates on Avhich the interpolation is based—is comparatively

large. In practice, more extensive tables than those at the end of this

book would be emploj'ed, and a much more accurate result could then

be obtained. For example, a first difference interpolation by formula

(10) between 24 per-cent and 2i per-cent would give z= -028445,

which differs from the true value b}- onh' 1 in the last place. If no

other tables except the 2^ and 3 per-cent were available a more accurate

approximation could of course be obtained by calculating a^-^^ (by

logarithms) at the rate -02843 and then interpolating again by formula

(10) between this rate and -03.

16. In the case of a redeemable security, several different methodi

of interpolation may be followed.

(i) Let A' and A" be the present values of the security to pay

»' and i" respectively, these values being found by the formulas

A'=K'+-?(C-K') and A"=K"+ ^ (C-K").
t I

Then, A being the given present value of the security and i being

the true yield which it is required to determine, it follows, as in the case

of the annuit}', that

j^ ^'
i=i'-\- ^,

——(i"— t') approximately

If y—the rate of dividend (calculated on C) payable on the security

—be taken as the second trial rate in place of i", then, since A" becomes

= C, and A'= K'+ '

,
(C— K'), the fornmla reduces to the form

A-K'--'^(C-K')
i=i'+ (y-0

C-K'--^(C-K')
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., C-A
=^-^'c^' W

A very simple and convenient approximate formula, involving the

calculation of only one quantity, namely, K', that is, the present value

of the capital at rate i'.

The reciprocals of A, A', and A" may obviously be substituted for

A, A', and A" in the foregoing argument. The interpolation between

»' and i" then gives

A ""
A'

i=i + — (e"— ^') approximately

A^"" A'

which reduces, i( g be tauen as the second trial rate in place of i'', to

C-A

In the case of a security redeemable in n years at par and bought at

a premium of k per unit, formulas (11) and (12) become

k

k

and «= — 7-'

1 + ^-

respectively. The second expression gives the common rule for finding

the yield on a redeemable security bought at a premium:—Deduct from

the periodical dividend the sinking fund which would provide for the

replacement of the premium at the date of redemption, and divide

the remainder by the price. In the application of this rule the rate

of interest employed in calculating the sinking fund should, of course,

be a rate differing not greatly from the actual yield on the security.

(ii) By a simple transformation, the equation A=K+ . (C—K)

Q J^
mav be written in the form i=^q- t^ . Hence, if it were possible to

•^A—

K

correctly guess the unknown rate i, the result of calculating K and

i2
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C—

K

inserting its value in the expression r] -, (in wliieh all tlie remaining

quantities y, C, and A, are known), should he to exactly reproduce the

Q j^
rate employed in the calculation. Suppose now the value of g -——; to

XX— IV

be successively calculated at the trial rates i' and /", and the respective

results to be I' and 1". If the true unknown rate i bad been

employed, the result, as ex])lained above, would have been i. Hence,

by interpolation, an approximate value of i is given by the

equation

i'^i' Y'-V

. i'(i"-r)-r(r-0
whence f=- yi_y_ -'^i •/

(IX)

A —

K

(iii) If the original equation be written in the form O^^i-r^—p»

another approximation to the value of i may be obtained by a precisely

similar process to that followed in (ii)—that is, by calculating the

A— K' A— K"
values of i' ———r, and i' ———r,, at the trial rates i' and i' resjiectively,

C— iv C— Iv

and interpolating between the results.

Suppose that i' gives as a result G',

and „ i' „ „ G",

The true rate i would give ,, <j.

Hence, approximately,

i-i' _ g-0'

, . i'G"-G7"+y(r-0 .,^.
whence i-

g"^^G^^ ^ ^

17. To test the accuracy of the various approximations obtained in

the preceding article, it will be useful to take, as before, the example of
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a 4'i-
per-cent debenture, rodeemable in 25 years at 112 i, and bought

jnst after the ])ayment of a half-yearly dividend for 120, so that

y=02; C= 112-5; an(JAi=;120. The valae of the debenture to

yield 2 per-cent halfyeai'ly is of course 112'5, and its value to yield

1| per-cent—already calculated in Art. 10-— is 121821. The given

price lies between these two values, so that «'= -0175 and i"= '02 will be

suitable rates for purposes of interpolation. Then, since by Table II

K=17-2;j3 and K"=41-707,

-^^::^; --
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it follows at once from the principle ujjon which the method is based

;

and it is also a better working formula, since it involves the differences

instead of the products ct the quantities, and consequently entails less

arithmetic.

18. Jn the foregoing Articles Tarious methods of approximation

liave been successively discussed, and the resulting formulas applicable

to the annuity and the redeemable security have been deduced

incidentally. In the Table on the following page the formulas arc

brought together so that the results can be compared. The several

methods discussed in Articles 4-5, 6-11, and 13-17 are referred to, for

convenience, as methods I, II, and III respectively. It must be

understood that the numerical values of i are given principally for

purposes of comparison. Better absolute values could be obtained,

in the application of methods II and III, by using Tables giving the

values of the requisite functions for smaller differences of i.

19. It has been shown in Chapter V, Art. 23, that the incidence

of income-tax may make a material difference in the value of a redeemable

security bought to yield a rate differing from the rate of dividend.

Conversely it may materially affect the yield on a security bought at a

premium or a discount. In order to allow for income-tax in determining

the yield, all that is necessary is to substitute y(l— ^) fory, where t is

tlie rate of tax, and to remember that the yield then obtained will be the

net yield after deduction of income-tax. For example, if allowance be

made for income-tax, formula (1) becomes

Similar]}', formula (14) becomes

i{l-t):
G"~G'

. {l-t)-^{i'G"-G'i")^g{i"-i')

G"-G'

On application of these modified formulas to the example already used

for comparative purposes, it will be found that in this particular case

allowance for income-tax at the rate of 1«. in the £ would reduce tha

yield by rather over 3f/. jier aimum.
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Approximate Formulas for the Rate of Interest.

Given n and a

Exaviple

71= 30
a= 20

Approximate
Formula lor i

I
j

None of practical

utility

II

III

No. of
P'oimnla

I +1 —r

i' + i'

1 _ 1

a a'

1 nv^+i

(2nd application)

u^"-n

1_L
., a a' .

i'+
^

j-(t -i)

Apjiroximate

Value of i

•028423

•028455

•028446

9 •028498

10

True value of i to six places

•028428

•028446

Ukdeejiable Securities

Given C;, (':, &c.. Wj, Mj, &.C., ff,
and A

Approximate Foniuila for i

1 (Applicable only to a Debenture
redeemable in one sum)

ff-

1+ —— k
2h

vvliere A'= A —

C

C

^ ^ ., ., A'-A

C-A

'

, C-A
in ,(«) ff + i ^r:^/

L

^

., C-A A'

' za"-ir

\id)
i'G"-G'i"^_q{i"-i')

U" —
G'

No. of

Example
C = 112^5

7t = 50
^= •02

A = 120

Approximate
Formula; Value of i

True value of i to six places

11

12

13

14

•018053

•017963

•017878

•017988

•017957

•017965

•017968

•017968

Note. —Any of the approximate rates obtained by the formulas may be used

new trial rate for the purpose of obtaining :i moi-c accurate approximation.
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20. It will be convenient to conclude this chapter with a few

illustrative examples:

(a) A debenture stock, redeemable at par on 1 October 1937, and

bearing interest at 6 per-cent per annum, payable half-yearly' on

1 Aprii and 1 October, is quoted on 1 August 1915 at 117. "What

rate of interest does it yield ?

The corresponding quotation on 1 October 1915 after payment

of the half-year's interest then due, would obviously be about 115

(i.e., 117-rtwo months' interest— 3). Hence, as u rough guide to the

yield, formula (1) gives i= — =0217 . . . from which it

100+'^ Xl5
oo

ajjpears that 2 J and 2^ per-cent would be suitable trial rates to

employ for the purpose of obtaining a more accurate approximation.

Xow the price of the stock per-cent on 1 August 1915 to yield

the half-yearly effective rate i would be

t)S[100y"+ 3(l + rt44l)]

and the values of this expression at 2| and 2^ per-cent will be found

to be 115-299 and 122896 respectively. Hence, the approximate

half-yearlv vield= 025——^_ X -0025= -02414. The required vield
J - - 7 59/

^

is therefore, approximately, £4. 17s. 9d. per-cent, convertible half-

yearly.

In practice, it is usual to estimate the ex interest price as at the

next following dividend date by simply deducting accrued dividend

from the quotation, and to calculate the yield on the net ^^rice so

obtained. Thus, in the case under consideration, the net price, after

.leduction of four months' accrued dividend, would be 115, which

would give as at 1 October 1915 a yield of £4. 17s. 7f?. per-cent,

convertible half-yearly. I^y this method the proportion of the dividend

from the date of ]mrchase to the next following dividend date is

allocated wholly to interest, instead of partly to interest and partly

to reduction of principal, and, consequently, the yield for the remaining

term of the investment is slightly reduced.

Tn the forecfoinc: solution no allowance has been made for the fact

that the whole of the dividend would be subject to income tax.

Tins i'act could, however, be taken into account by a very trifling
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Inod ill cation of tlie work. For let the rate of tux be Is. in the £.

Tlien the price of the stock per-cent to yield the net half-yearly

rate i after dnhiction of tax would be rJ[100f** + 2-S5(l -i-r/441)], from

which it will bo found—by interpolation between 2s and 2| ]ier-cont

—that z=: '02305 approximately. The yield would therefore be

approximately £4. 12*. Id. per-cent, convertible half-yearly net, or

£4. Vis. Od. subject to tax. The adjustment for income tax

consequently makes a difference of 9d. in this case in the yield.

The approximate calculation of the yield on a debenture bearing a

fixed rate of dividend and redeemable in one sum at the expiration of a

fixed period may be somewhat simplilied by the use of Tables of Bond

Values. Tables of this description give the values to yield various

nominal rates (convertible with the same frequency as the dividend is

payable, and proceeding as a rule by regular differences of -Jth, -jV^^*

or vV^li) of bond.s carrying various rates of dividend and redeemable at

the end of various periods (proceeding by regular differences of half-

years or years). The yield on any bond coming within the limits

of tabulation can of course be approximately calculated by entering

the table inversely with the approximate price at the nearest

dividend-date and interpolating by first differences between the yields

corresponding to the next higher and lower values.

For example, Degbuee's Tables give the values of a 22-

year G per-cent bond, (the dividend being payable half-

yearly) as 115-4492 at 485 per-cent and 114-7102 at 4-90 per-

cent. Hence, in the case first discussed, if the ex-dividend price

at 1 October 1915 be taken (with sufficient accuracy for practical

- 45 „ ^
purposes) as 115, the approximate yield is 1-S54- ^ x -05= 4-88

/ 4

per-cent.

Since the net yield (with allowance for tax) equals the yield

on a 6(1— /) per-cent bond, it may be calculated by interpolating

between the yield on a G per-cent bond and that on a 5 per-cent bond.

Proceeding in the same way as above it will be found that the yield on a

5 per-cent 22-year bond at 115 would be 397 per-cent. Hence, if the

tax be Is. in the £ the yield on the G per-cent bond would be

G
488—-- X -91= 4-61 net or 4-8.J gross.

2U
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(J). Given the values of rt;r| Jvt rates V and i respectively, find

approximately the yield on an annuity payable annually for n years

and bought at a price to yield interest at rate i' on the lohole purchase-

money for the term of n years, and to admit of the replacement of

principal by a sinking-fund invested at the lower rate i.

Let I be the required rate. Then to yield rate I the annual rent of

annuity for each unit invested = f-^'— *•

Also to yield the effective rate i' the annual

rent per unit invested would be —7-
;

and to yield the effective rate i the annual

Hence

rent per unit invested would be —^
an\

1 ., . 1

1— » __ ««J ^?Ti

whence 1= i-\— — (lo)

This is an example of exterpolation, for I must obviously be greater

than either i or i'. In practice, if interest tables were available, it

would be better to interpolate between the two rates of interest at

which the ordinary 20-year annuity-values were respectively just greater

and just less than the annuity-value on the special basis.

For example, let it be required to find the yield on a 20-year

annuity bought to pay 3| per-cent for 20 years on the whole sum

invested, and to admit of the replacement of principal by a 2J per-

cent sinking-fund.

Since — at 2i per-cent= -064H7, and — at 3i per-cent= 0703G1,

formula (15) gives

1=025 H- ^=-04109.
•UU(521-1
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Xow — at 3.V and 2i per-ceiit =— at 2^ i)er-cent+ 01=074117,

and on reference to Table V it will be found tliat—= -073582 at 4 per-cent
"Jin

and -076876 at 4^- per-cent. Hence, by simple interpolation the required

yield= -04086 approximately.

(c). A Government litock bearing interest at 3,1 per-cent payable

half-yearly for eight years, at the end of which period holders will have

the option of accepting repayment or of exchanging their holdings for

equal amounts of an existing stock bearing interest at 3 per-cent

payable half-yearly and redeemable at par 20 j^ears from the present

time, is quoted at 110 per-cent. A half-year's interest on each stock

has just been jiaid. What should be the present quotation of the

3 per-cent stock to give the same yield as the 3|- per-cent?

A present purchaser of the 3f per-cent stock would obviously

realize less than 3 per-cent on his investment if he were to accept

repayment at the end of eight years. Hence it must be assumed that

the option to exchange will be exercised.

The first step is to determine the yield on the 3J per-cent stock,

allowing for the option to exchange. Since the extra \ receivable for

the first eight years would only suffice, if applied to write down

principal, to write off 4 of the premium it is obvious that the yield

is considerably under 3 per-cent. If 2-3- per-cent convertible half-yearly

be taken as a trial rate, then

100y» at \\ per-cent= 60-841

11^40 „ „ = 46-990

i«I(5 ,, „ = 3605

Value of Stock to pay 1:^^ per-cent half-yearly= 111-436

Hence 1^ per-cent proves to be less than the true jneld. If now

1^ per-cent be taken as a second trial rate, then

100«-'o at li per-cent= 55-126

li^4„i „ ., = 44-874

\a^l ,. ., = 3-533

Value of Stock to pay 1| per-cent half-yearly = 103-533
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Hence by interpolation, the hall'-jeavly yield is approximately

•0125+- x0025= -01295

It nnlv remains to calculate the value of tlie 3 ])er-cent Stock at

this rate.

lOOi-^o at 1-205 per-ccnt=(by logarithms) 59 7G9

.-. Value of Stock per-cent ==59-769+J^ (l()0-59-7G9)
^ -01295^ ^

= 10G-37.

The 3 per-cent Stock should therefore be quoted at lOGi approximately.

(<7). A 5 per-cent loan was issued on 1 July 1910 at the ])rice of

95 per-cent. Interest is payable half-^-early on 1 January and 1 July,

and the principal is repayable at par in 20 equal instalments, by annual

drawings commencing on 1 July 1916. Determine approximately

(i) the rate of interest paid b}" the borrowers on the whole loan;

(ii) the rate realized by an original subscriber on a bond drawn for

repayment on 1 July 191G.

(i). In addition to paying 2'5 half-yearly for each 95 borrowed

—that is, 2-631 . . . per-cent half-yearly on the issue price—the

borrowers have to pay a bonus of 5 on redemption, which (as the

average term of the loan is 15 years) might be roughly equivalent

to an additional -gth per-cent interest half-j-^early. Hence, 2|- per-

cent would appear to be a suitable half-yearly trial rate.

In terms of a half-yearlj' rate of interest,

K'=:'Ci2o(o^— ai^) per unit repayable

025 X "-^^J^

2

•458997
= at24' l.er-cent ^ ^., Z. or •45270.

lOlo/o

Also = 1; A= -95; and y=: -025. Hence, by formula (11),

t= -025 + -0275-^^
•i)4/3

= '02751 approximately.
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In tliis case it turns out tliat the true viold is very close to tlia

assumed rate. In fact, at 2J per-ceut the value of the loan per

unit, bv the formula A=K+ '-. (C— K),
I

•025= -40270+ -—— X 54730= 05025.
02/5

And the value to pay 2.V per-cent half-yearly would clearly be

unity. Hence, by interpolation, the half-yearly yield at the issue-

price of 95=:-02754 ~ x 0025,
•05

= •02751 ... as before.

(ii). The rate realized on a bond drawn for repayment on

1 July 191G may be approximately calculated by formula (1)

Herey=025; 7l'=:— 05; «= 12. Hence the half-yearly yield

1 1

40
"^

240 ^^= "03 very nearly.

i-ii
480

The true yield is, in fact, slightly over 3 per-cent half-yearly, for

the value of the bond at the time of issue, to yield this rate, would

have been 100v^--[-2\air,\ at 3 per-cent, which =95-023. The

bond in this case being bought at a d/acoinif, formula (1) gives, as

explained in Art. 5, rather too small a value for i.

(e). The Eevenue Account of an assurance company shows that the

fund increased from A at the beginning of the year to B at the end of

the year, and that the net interest earnings (after deduction of income

tax) were I. Find approximately (i) the effective rate of interest;

(ii) the force of interest, earned on the fund in the year.

(i). In order to find the effective rate, it is usual to consider

the interest earnings as received at the end of the year and th&

other income and the outgo as uniformly distributed over the year.

On this basis the balance of other income (exclusive of interest

earnings) and outgo, amounting to B—A— I, must be treated as

received continuously throughout the year. Hence, if i be the

required effective rate,

A(l-f/) + (B-A-I)si;=B.
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Now, sn = = : —
:;

= 14--—-—.
log, (1 + ,_«^_ 2 12 •

2 3 •
*

*

... A(l + + (B-A-])(l+^-^^...)=B,

whence (if powers of i above the first be neglected),

21

A-fl3-I
approximately.

This result gives tlie 7iet effective rate. If the gross interest earnings

21' 21'
wore I', the gross yield would of course be — -r—-, not

A + B-r A + B-1'

(ii). The force of interest, i.e., the nominal rate of interest

convertible momently, is measured by the ratio of the interest

received during an indefinitely short interval to the principal

bearing interest during that interval. Its value will vary slightly

from moment to moment, but, on the assumption that income

(including interest earnings) and outgo are uniformly distributed

over the year, its average value may be taken to be the ratio of

the interest earnings to the mean fund. Hence, if 8 be the required

force of interest,

21
8 = -—- approximately.

It is easy to show that these values of i and S approximately

correspond. For

21

-I a + bV A+ ByA+ B

21 2P
A + B (A + B)-^

= S + ^ + ...

which, to the second power, is the correct relation between the

effective rate of interest and the corresponding force.

(/). Consols were bought on 17 June 1900 at lOlg. What rate of

interest did they then yield ?

The rate of dividend on Consols up to 5 April 1903 was 24 pcr-cent,
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but it is dear that tlie extra | ])er-cent per annum for 3 years was

not sulHcient to write off tlie premium of 1| per-cent. It would liave

been proper to assume, tlierefore, at the date of {)urchase tliat the option

to redeem at 5 April 1923 would be exereised.

As the tables at the end of this book do not go below 1 per-cent, it will

be convenient to find the approximate effective yield. Then, since the

period elapsed since the last dividend-date was 73 days, the algebraical

expression, in terms of the effective rate i, for the value of the stock per-

cent on 17 June 1900 will be (1 + i)>[(2|a.]j, + ^ffj,) x t^ + lOOt'23].

If 2= '025 be taken as a trial rate, the value of this expression will be

1-00495 [44 044 xl009^3 + 515070] which =101-626. This is so close to

101|- that it is unnecessary to take anotlier trial rate. At tlie date in

(juestion the yield on the stock was almost exactly 2h per-cent effective.

{g). A Foreign Eailway Loan, originally for £2,000,000, bearing

interest at 5 per-cent, payable half-yearly on 1 January and 1 July, and

redeemable at 105 per-cent by half-yearly drawings (for repayment on

1 January and 1 July) by the operation of an accumulative sinking-

fund—£65,000 being applied half-yearly to the service of the loan—is

quoted 111 years after issue at 95 ex interest. What rate of interest

would the investment yield to a syndicate acquiring the whole of the

outstanding bonds.

The investment practically amounts to the purchase of an annuity of

£130,000 per annum, payable half-yearly for the remaining term of the

loan, at a price equal to 95 per-cent of the nominal amount of the

outstanding bonds. Hence it will be necessary in the first instance to

find (i) the term which the loan has still to run
;

(ii) the amount of the

outstanding bonds.

Let 11 be the number of half-years comprised in the original term of

the loan—from the date of issue to the date of redemption of the last

bond.

Then, since the loan was virtually a loan of £2,100,000, repayable

with interest at the rate of —-— per-cent per annum convertible half-
105

yearly, by an annuity of £130,000 per annum, payable half-yearly, it

follows that

6-5a5^=210,

2-5
where fl-^i is to be calculated at -

—

z per-cent,
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lo^l3-]o^3 0368221 ^„ .,,

loi'43— loijl^ •0102192

At tlie (late of valuation, therefore, the loan has 39'316 half-years

still to run, anil the nominal amount of the outstanding bonds is

1 25
r-—; X 65,O0Ort'39--3i6i at -—— per-eeut, or 1,509,149, the value of which,
lOo 1*05

at 95 per-cent would be 1,490,692. Hence, the question resolves itself

1 490 692
into finding the rate of interest at which fiWsiH = \^ L^'' or 22"934.

By refei'ence to a table of the values of aj^], it will be found that the

required rate is very nearly "03. Hence, the investment would yield,

appi-oximately, 6 per-cent convertible half-yearly.

In practice the redemption-schedule would be so adjusted as to

provide for the repayment of an exact integral number of bonds at the

end of each half-year and for the repayment of the whole of the then

outstanding bonds at the end ot the 31st year, but this would not

materially affect the yield.

(Ji). A loan bearing interest at
ff

per unit payable half-yearly and

repayable by annual drawings at par, or by annual purchases in the

market if below par, is issued at a discount of k per unit. What rate of

interest does it yield (1) if a fixed proportion of the loan, z per unit, is

to be drawn or purchased annually
; (2) if a fixed sum of z per unit is to

be applied annually in drawings or purchase ?

The effect of an option to purchase in the market has been considered

in Chapter V, Article 32. In the present instance it will be reasonable

to assume that the bonds required for redemption will be purchasable

annually in the market at prices yielding the same rate as that yielded

by the loan at the time of issue. On this assumption the required rate

will be the rate yielded by a bond bearing interest at rate
ff

payable

lialf-yearly and repayable at par at the end of the term of the loan.

In case (1) the term of the loan will be -, and the half-yearly yield

may be found approximatelj' by any of the usual methods.

In case (2), if / be the effective yield and ?i the term of the loan,

and i-=(l-rj,f)a^^

whence t= -

—

i— /c
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from wliich i may be found either by solution of a quadratic or by

interpolation.

The relation z +gsfi={l— l-) (z+i) could, of course, be written

down without the introduction of «, since a year's sinking-fund and

dividend nuist just suffice to pay a year's interest at rate i on the

original invested capital and to pay oti'r per unit of the invested capital.
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CHAPTEll VII.

Capital Redemption Assurances.

1. It lias been shown in previous chapters that the capital invested

in an}' series of payments may be replaced by means of a sinking-fund.

More generally, a sum required at the end of any number of years,

whether to replace invested capital or for any other purpose, may be

secured, in theory, by the accumulation of an annual sinking-fund of

-3 per unit, where n is the number of vears in question. In practice,

liowever, an isolated transaction of this nature presents certain

difficulties; it may be found impracticable to invest the requisite sinking-

fund and the periodical interest-earnings with the necessary regularity

—

in fact, this difficulty would almost invariably arise in the case of a

sinking-fund of small amount—and, owing to the fluctuations in the

rate of interest obtainable upon investments, the accumulation of a fixed

periodical sinking-fund will not, as a rule, produce the exact sum

required. Consequently, many insurance companies have, of late years,

nsade it part of their business to grant assurances securing the payment

of a fixed sum at the expiration of a fixed term of years. These

assurances were originally intended to meet the requirements of investors

in leasehold properties, and were accordingly called Leaseliold

Redemption Assurances, but they have since been utilized for many

other financial purposes—to provide, for example, for the repayment of

the principal of a loan or for the redemption of a debenture-issue—and

have acquired the alternative names of Sinhing-Fund Assunuices and

Capital Redemption Assurances.

2. The consideration for a Capital Redemption Assurance—that is

the price paid to the assurance company- in consideration of its granting
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the assurance—usually takes the form of a single payment made at the

inception of the assurance, or of a series of uniform periodical payments

made at equal intervals throughout the term of the assurance, the first such

payment being made at the inception of the assurance and the last at the

beginning of the concluding interval in the term. The single payment

and the uniform periodical payment are called respectively a SinrjJe

Premium, and an Annuctl, Half-yearly, or Quarterly Premium, as the

case may be. It will be observed that the periodical premium is of

precisely the same nature as a sinking-fund, but that it differs from it in

being paid at the beginning of each interval, or, in other words, in

ndvance, instead of at the e?id of each interval. In fact, the payments

of the periodical premium for a Capital liedemption Assurance form

an annuify-Jue, whereas the successive sinking-fund contributions form

an ordinary annuity.

3. The net Single Premium for a Capital Redemption Assurance

of 1, payable at the end of n years—that is, the Single Premium which,

if accumulated at the assumed rate of interest, without any deduction

for expenses or for the profit of the insurers, would amount to 1 at the

end of n years—is denoted by the symbol A^]. The net periodical

premium for a similar assurance is denoted by the symbols P"^, P^ , P^|,

&c., according as it is payable yearly, half-yearly, quarterly or with any

other frequency.

4. The net Single Premium for a Capital Redemption Assurance

has been delined to be such a sum as would accumulate to the sum

assured by the end of the given term ; hence, it follows that, on the

basis of a single uniform rate of interest i,

Ainx(l + 0«= 1

whence A^= y" (1)

On the same basis,

whence P71I= (2)
«ir+i|—

1

Alternative expressions for P^i may be obtained as follows:

(i) The net annual premium must clearly be the equivalent, in the

form of an annuity-due, of the net single premium; hence it follows that

Jr 71, X an|= A jii

whence i'^ ==^ (3)
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(ii) Again, the annual rent obtained bj the investment of a

unit in the purchase of an annuit3'-due, payable annually for n years,

must be equal to interest in advance on the unit, together with a

sum sufficient, if accumulated throughout the term of the annuity,

to replace the unit at the end of the term. But the intei'est in

advance on 1 is «?; and the sum paid annually in advance which will,

if duly accumulated, produce 1 at the end of n years is P^ .

Hence —:• = c^+P^i]

wlience Pnl= ^ or d .... (4)

It may be easily shown that formulas (2), (3), and (4) ar©

algebraically identical. For

_ t« _ 1— zrt:;rj _ 1

9' III ^nf ^n\

5. From the form of the expression obtained in formula (4), it

appears that the numerical value of P^ for given values of n and i may

be found by entering an Annual Premium Conversion Table with the

value of a^a^ . The subject of Conversion Tables is fully discussed in

Chapter VIII of the Text-Book, Part II, and it will be sufficient to

state here that Annual Premium Conversion Tables are tables giving at

various rates of interest the values of — — d for values of X
i ~r A.

proceeding by small equal differences throughout the range of practicable

annuity-values. Hence, if the table based on the rate of interest i be

entered with the value of rt^rm at that rate, the result will be

— d, or Pn|.
1 + a,;^rT

Let it be required, for example, to find the value of P20I at 3 per-cent.

The value of oigi at 3 per-cent is, to three places of decimals, 14'324, and

the tabulated value corresponding to 14-324 in the 3 per-cent Annual'

Premium Conversion Table is -03613. Hence P20I at 3 per-cent= -03613.

Of course, this result might also have been obtained by taking the.

reciprocal of (sqi]— 1) or 27676.
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6. The values of P,i , V~n , &-C., may be readily obtained by any of

the methods employed in finding an expression for P^|. In general,

p(ni) _ 1 _ V^

m m

1 1

The third expression is given for purposes of comparison with the

corresponding expression for P:;^^ , but from its form it will be seen that

the Annual Premium Conversion Table affords no facilities for the

evaluation of P n|

.

In the special case in which m is made infinite Pn] becomes the

premium per annum payable continuously, by infinitely small instalments,

for an assurance of 1 payable at the end of n years, and is denoted by

the special symbol P^

.

Formula (5) then becomes

1 v^'- 1Ph:=--=-=--S (6)
Sn\ d-n, O-n]

The numerical value of P;^ may be found by entering with an\ an

Annual Premium Conversion Table constructed on a continuous basis

(that is, a table in which X is the argument and — — 8 the result).

7. It will be seen that the sole difference between the net annual

premium for a Capital Redemption Assurance and the net premium

per annum payable at more frequent intervals consists in the fact that

the former is paj'able in one sum at the beginning of the year, while the

latter is payable by instalments spread, over the year. The second

method of payment entails a loss of interest to the assurer as compared

with the first, and consequently necessitates a corresponding increase in

the premium per annum payable at more frequent intervals as compared

Tvith the annual premium. In the case of a premium payable m times a

year, the loss of Interest, valued at the beginning of the year, is

1 (m) i £.
CT.-1

-P^l [(l-rir,) + (l-fm)+ . . . +(1-1,-^)]

=:P,-n (1-ax)
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Hence, it follows that

whence

P;il =P;ri + Pn| (l-ai|

)

im)_ P,T1 _
•^Wl — (71.) — - "I'

an

J(»>)

\ m J

This relation may he readilv ohtained from formula (5). For, since

On) (»i)

it follows that
.„,_ v^ 1 _ .?("')

a 5:

As a special case, P;^ = P;n
rf'

8. At the expiration of the term of a Capital Kedemption Policy,

the net premiums paid in respect of the Policy, accumulated at the rate

of interest assumed in the calculation of the premium, will amount, by

definition, to the sum assured. Further, at any given time during the

currency of the Policy, the net premiums paid up to that time will

clearly amount to such a sum as will suffice, with the remaining premiums

and interest, to provide the sum assured on the expiration of the term of

the Policy. This sum is called the Value of the Policy, or the Policy-

Value. It will be seen, therefore, that the Value of a Capital

Redemption Polic}', at any time during its currency, may be determined

in two ways, namely, either (i) by a retrospective process, as the

accumulated amount of the net premiums paid, or (ii) by a prospective

process, as the difference between the discounted value of the sum

assured and the discounted value of the remaining net premiums. These

two methods of determining the Policy-Value must obviously produce

identical results.

9. The Value, at the end of t years, of a Capital Redemption

Policy assuring 1 at the expiration of n years, at a net annual premium

of Vn, is denoted by the symbol ^V^ ; the value, after t years, of a

similar policy, at a net premium of P,i) per annum payable m times

a year, is denott'd by the symbol <V^ .

It will be convenient to consider separately the two cases in which t

is (i) integral, and (ii) partly integral and partly fractional—the first
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case being that of a policy wliich has been an exact number of j'ears in

force, and the second that of a policy which has been in force an

integral number of year.s and a fraction of a year.

(i) Let t be integral. In this case it will be proper to assume

that t years' premiums have been paid and that the next premium is

about to fall duo.

Considered retrospectively the policy-value may be regarded, as

already explained, as the accumulated amount of the net premiums paid.

From this point of view, therefore.

.V,T= P.l(.H:i]-l)='-^^ = 'i' .... (7)
Sn+ij— 1 S„|

Considered prospectively the policy-value is such a sum as will,

with the remaining premiums and interest, suffice to provide the sum

assured at the expiration of the term of the policy; that is to say, it is

the present value of the sum assured less the present value of the

remaining premiums. Hence, from this point of view,

Now fW-^=l— /ffir^= l— f?a;^i:(!

.-. A'7il= l-(Pn, + f/)a;r:7

And by formula (4)

,

P^l + d= —

... ,V,T-1-^^ (8)

From this expression the algebraical identity of the formulas obtained

by the retrospective and prospective methods may be readily established.

For

1-
a,i,| a,i| a^ «„

In the case of a policy subject to a premium payable vi times a year,

each year's premium is the exact equivalent, after allowance for loss of

interest, of the annual premium for a similar policy. Hence it follows

that the.policy-value at the end of any integral number of years will be

the same as that of a similar policy subject to annual premiums. This

result may be readily established by algebra. For
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m (m) 1 (m)

_ (i + 0^"^ti _ fH _ fi] _ vt

(ii). Let t be partly integral and partly fiactional. In this cas«

(r+ l) premiums will have been paid on a policy subject to annual

premiums, where r is the greatest integer in t, while r premiums and

one or more instalments of an additional full year's premium will have

been paid on a policy subject to premiums payable m times a year.

Take first the case of a policy subject to annual premiums, and

let t=^r-\— . Then by the retrospective method

1 1

, lVlS]= Pn|»f+Tl (1 + 0^'= (1 + OK»-V^ + Prt,)

P

= v^-pr+,Y^ (9)

and by the prospective method

IT 11 -r— 1

—

-ii_
iV^|= y P— v pl\,a.n-r-i\

= t) "jv+iVftt as before.

In the case of a policy subject to a jjremium payable m times a year,

let f=r-\ 1 . There Avill then have been paid on the policy
m qtn

r full years' premiums and (l+l) instalments of an additional year's

premium. Hence

r+ '- + -L V^, = (1 + ^)';"! P«; 6- Z+T^
m qm ^

itt, \

n'l

= V in <pn ,.+ , \ „;
— (1 + z) ';»' P-j n^_ M-ir

m I

^ (ml ("'•

= ^+f + A Vu-Cl + O'^^P/Ti «i_2±i| . . . (10)
m <itn in I
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This relation shows that at the end of any fractional period the value

of a Capital Redemption Policy, subject to ])reniiunis payable

m times a year, falls short of the value of a similar policy at annual

premiums by the value of the unpaid portion of the full year's premium

—a result whicli might have been deduced from the consideration that at

the end of the year the two policies have the same value.

If - be put= in formula (10) the resulting expression gives the

policy-value /?/s^ after payment of the (/ + l)th instalment of the

full year's premium, and in order to obtain the value just before

payment of that instalment—that is, at the end of rH vears—itm -

would be necessary to deduct — Pr|. The required result may, however,

be more simply obtained by putting §^= 1, whencs

m m m
|

and, by writing (Z— 1) for I,

,+ lV^i=,+iV^-P-|a,n^ (11)
m m ml

Thus the value of a policy subject to a half-yearly premium, just

before payment of the second half-year's premium, is given hy the

formula

V-— V- ipS'

From the foregoing analysis it appears that Capital Redemption

Policies subject to premiums paj'able at half-yearly or shorter intervals

may- be valued, with approximate accuracy, as jjolicies at annual

premiums subject to deduction of the unpaid instalments (if any) of

the current year's premium.

10. SinceP,T=-——:: and .5;^= (1-hO»-' + (l + 0"~"+ •••+!,

it is clear that the lower the rate of interest assumed in the calculation of

the premium, the larger will be the premium. On the other hand, the

lower the rate of interest employed in accumulating the premiums, the

smaller will be their accumulated amount. A decrease in the assumed

rate of interest affects the policy-value, therefore, in two opj)osite wavs,
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and the question arises whether the net result is to increase or decrease

the value.

Since ,V^=(1 + 0P^= — , it is evident that a decrease in the rate of

interest increases the value of a policy of one year's duration, provided

« be >1.

Now

1-^V;^^
a^

an— 1| a^-ol ^n-t\

^n\ a,i_i| a,i_(_|.i

= (1-,V^)(1-,V,T^|) . . . (l-,V;rr7+T|)

and since lYm, i^tTT, &c., being the values of policies of one year's

duration, are all increased by a decrease in the rate of interest, it follows

that 1— t^^ is decreased, and, therefore, that ^V;^, is increased. Hence,

the lower the assumed rate of interest the greater will be the policy-

value.

11. The net annual premium for a Capital Redemption Assurance

of 1, payable at the expiration o^ n— t years, is V^'^t]- Hence, when an

«-year policy for 1, at a net annual premium of P„^, has been t vears

in force, the remaining {n— f) premiums of P,i would assure the sum of

p-i—

—

, and the accumulations of the t premiums already paid must be
P»n)

sufficient to secure the balance of the sum assured, namely, 1—
i 71-^1

It follows, therefore, that at the end of t years an w-year policy for 1

could be converted into a Free or Pald-vp Policy (that is, a policy free

P;ri

from any furtiier pavments of premium) for 1— "

. The Paid-up

equivalent of an «-year Cnpital Kodemiition Policy at the end of

/ years is denoted by the symbol <AV(A;i|).

Hence, in the case of an ?2-year Capital Redemption Policy for 1,

subject to an annual premium of P^, which has been t years in force

-WT f k -\ 1 "I 1 ^n-t
t\Y(Anl)= 1- :p^ = 1- ^T

^ (i + iy-tsTi^aTi
^

^ ^ ^

Sn\ «»"il
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Ai •
*«"

^--.
Also, Since —=^fyn\

V" * An-ti

This result shows that, as must clearly be the case, the amount of the

Paid-up Policy is the sum which the policy-value, if applied as a single

premium, would assure at the expiration of the term of the original

policy.

In ])r:ictice, a Capital Redemption Policy may usually he converted

into a Paid-up Policy for an amount bearing the same proportion

to the full sum assured as the number of premiums paid bears to the

total number payable.

On this basis, an /«-year policy for 1 would be convertible at the end

of t years into a paid-up policy for - . This amount is less than the

theoretical paid-up equivalent ; for, since the Arithmetical Mean of the

n quantities v, v'^, . . . v^, is obviously less

—

n being >f—than that of

the t quantities v, v^ . . . v*, it follows that — is < — , and therefore

that — is > - or that iW (kn\) is > - .

a~\ n ^
' w

12. Of the numerous practical questions that arise in connection

with Capital liedemption Assurances the following may be taken as

examples:

(i) A Capital Kedcmption Policy for a term of 40 years, subject to

an annual premium at the rate of £1. Ss. per-cent, is ollered for sale just

before the 11th annual premium falls due. What would be its value as

an investment to pay 4 per-cent interest, and how would the value be

affected (a) if the policy were convertible, at the option of the holder,

into a Paid-up Policy for a reduced amount bearing the same proportion

to the full sum assured as the number of premiums paid bears to the

total number originally payable, (b) if it carried a guaranteed surrender-

value of 95 per-cent of the premiums paid accumulated at 2 per-cent

compound interest?

If the policy be regarded simply as a contract securing the payment

of the sum assured at the expiration of the original term of 40 years in

consideration of the due payment of the annual premium, its investment-

value at the end of 10 years to pay 4 per-cent, would be the present

value of the sum assured at 4 per-cent interest less the present
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value of the future premiums at the same rate. Hence, on this

basis the required value per 100 assured=100y3o_i-4a3oi at 4 per-cent

=30-832-25-177= 5-655.

Consider now the effect of assumptions (a) and (&) :

On assumption (o) the Pohcy could be converted into a Paid-up

Polic}' of 25 per 100 originally assured, and the value of this reduced

Policy at 4 per-cent would be 25^•3*' which= 7" 708.

On assumption (6) the policy could be surrendered at the end of

10 years for -95 x l"4(*ni— 1) per 100 assured, where su\ is to be

calculated at 2 per-cent, that is, for 14-854,

In this case, therefore, the surrender-value would be nearly twice the

4 per-cent value of the Paid-up Policy, while the latter would be

considerably in excess of the 4 per-cent investment-value of the original

Policy on the basis of its being kept in force for the full sum assured

until maturity.

These results indicate the importance of Paid-up Policy and Surrender-

Value options in connection with Capital Redemption Policies.

(ii) A loan is made at 4 per-cent payable annually, and the principal

is to be repaid by means of a 20-year Capital Redemption Policy,

subject to an annual premium calculated on a net 3 per-cent basis.

What is the actual rate of interest paid by the borrower on the entire

transaction ?

The value of Pjo «it 3 per-cent is •03G13. Hence, in respect of each

100 advanced, the borrower pays 3"613 at the beginning of each year

for a term of 20 years, by way of a premium to secure the repayment of

the principal, and 4000 at the end of each year, for the same period, by

way of interest. The actual rate of interest which he pays on the whole

transaction is consequently the value of i given by the equation

100=4ffr^f3G13a2o|.

On solution of this equation by trial, it will be found that the required

rate of interest is 464 per-cent approximately.

(iii) Required the value, to pay interest at rate i on the basis of a

Capital Redemption Assurance being effected to replace capital, of a

leasehold property of the estimated net value of R per annum for an

unexpired term of 7i years.

Let K denote the required value.

The investment may be covered by a Policy maturing in either n or

n-|-l vears.
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(a). Suppose an w-year assurance to be effected, and let Sj

denote tlie sum to be assured, and P'i| the office rate of premium

per unit assured. Then, since the premium on the assurance i»

payable in advance, the investor's total initial outlay will be

K + Si.P'^ . The annual income from the prc)})erty must suffice to

pay interest on the total outlay and the renewal premium on the

assurance.

Hence R=(K+ S,P'^0^•^-SlP'^|.

At the end of the nth year, interest only will be jjayable (the

last premium on the assurance having been paid at the beginnings

of the year out of the income received at the end of the («— l)th

year), and there will consequently be a balance of income, amounting

to SiP',7|, available, with the proceeds of the policy, to replace the

total outlay; whence

S,PV.| + S,= lv+ S,P'^j

and Si= K.

It follows, therefore, from the first equation, that

E Rv
K=S,

P',-^(l + 0+*" '^'n\ + d'

(&). Suppose an (w+ l)-year assurance to be effected, and let

S2 denote the sum to be assured, and P',T+T| the office rate of

premium per unit assured. Here, also, the total outlay is

K+ SoP'iT+Tl, and

U= (K + S,P',T+fi) i+ SoP';r+n

but at the end of the («-f l)th jear, the proceeds of the policy

must provide a year's interest in addition to replacing tlie total,

outlay; whence

These equations lead to the results

k=k/—-^^

—

-1)
\Vn+l+d J

and 82= Yy—--j.
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From the results obtained in (a) and (h), it appears that the price

to be paid for an ?i-year annuity of 1 per annum to yield interest at

rate i, on the basis of a Capital Redemption Policy being effected to

V 1
replace the invested capital, will be ,_ or —, r~j~^ according

1 „( + rf r n+l\ + (i

as an assurance for ?i or n+ 1 years is effected, and that the sum to be

assured will be, in the first case, the price paid, and in the second case

the price paid increased by a year's rent of the annuity. The expressions

V 1
s-nti

r

—
J
— 1 \^i" "*^^5 in (jeneral, be equal for ofiice-valuesof

P';^ and P'^TipTI- If? however, both premiums be net premiums calculated

at the rate of interest i, then the two expressions become r- and
Pn| + d

1 respectively, and it mav easily be shown that each is

PjH-T|+ <^

=-an . It is clear that this is as it should be, for, under the special

conditions contemplated, the assurances become merely sinking-funds,

calculated and accumulated at the rate of interest employed in valuing

the annuity.

As a numerical example, let it be required to find the price to be paid

(allowing for income tax at Is. in the £) for an improved ground

rent of £100 per annum payable annually for 20 years, the investment

being made to yield interest at 4 per-ceut (less tax) and to admit of the

replacement of capital by means of a 20-year Capital Kedemptiou

Assurance at an annual premium of £3. 12s. 'id. per-cent.

In this case the formula obtained in (a) will be the one to be

employed, and ^=•038 ; 11= 95; and P'2ol= 030125. Hence the price

95
to be paid= the sum to be assured=

i.Qgg >< -036125 4- "038
=^^'^^^^-^^^

The annual premium on the policy= l,258-316 X "036125= 45 157

Total initial outlays 1,303-773

Net income from ground rent, less tax= 95

Interest on 1,303773 at 4 per-cent, less tai = 49-543

Annual premium on policy =45 457

13. Throughout this chapter it has been assumed that the net

premium for a Capital Redem])tion Assurance would be calculated on
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the basis of a single uniform rate of interest. This, however, would not

always be the case. In view of the difficulty of forecasting, with any

certainty, the rate of interest likely to be obtainable on investments

throughout the long periods over which many Capital Redemption

Assurances extend, it is considered by some authorities that a decreasing

rate of interest should be employed in the calculation of net premiums

for such assurances. The assumption of an annual decrease in tlie rate

leads to inconveniently complex formulas, and for practical purposes it

is more usual to take a uniform rate of, say, 3 per-eent for the first ten

or twenty years, a rate i, i, or | per-cent lower for the next ten or

twenty years, and so on, until a minimum of, say, 2 per-cent is reached.

Let it be required, for example, to calculate the annual premium for

a Capital Redemption Assurance on the basis of 3 per-cent for the first

twenty years, 2^ per-cent for the following twenty years, and 2 per-cent

thereafter. Clearly for values of n less than 21, the value of Pji will be

given bv the ordinary formula ^

—

-
, where s,i+i| is taken at

3 per-cent. For values of n between 21 and 40,

Pn|=
sg'l (1-025)

«-2o+ 5fz^;-l

and, finally, for values of n exceeding -10,

1
Vn\=

sgf(l"025)2"(l-02)«-'o+ 4T°(l-02)«-''»+ sSo -

1

The net value of a policy subject to a premium calculated on this basis

would, of course, be found by accumulating the premiums paid at

3 per-cent up to twenty years from the inception of the assurance, at

2^ per-cent during the following twenty years, and at 2 per-cent

thereafter.
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CHAPTER YIII.

Inteeest Tables.

1. In the solution of Compound Interest problems—whether in the

simpler problems involving merely the calculation, at a specified rate of

interest, of the present value or amount of a given capital sum or

annuity, or in tliose of a more complex description, such, for example^

as questions involving the determination of the rate of interest in a

given financial transaction—much time and labour may often be saved

by the use of Interest Tables, i.e., prepared tables showing the values of

the elementary interest functions at various rates c.f interest. Many

such tables are already in existence, but it may occasionally be necessary^

for some practical purpose, to construct a table of some special function

or to tabulate the values of one of the elementary functions at a special

rate of interest or to a greater number of places of decimals than has

been retained in any existing table. In studying the subject of

Interest Tables it is necessary, therefore, to investigate the methods

that may be employed in the construction of such tables, as well as to

acquire a knowledge of the nature and extent of the principal existing

tables-.

2. The functions whose value? have been most generally tabulated

are (14- 0", f", ««!, «,71, — and — for various values of i and n. The
s^ an\

values of both — and — are given in some tables, but this has
Sn\ a^,

usually been considered unnecessary, since the values of either function

can be readily obtained from those of the other by reference to the

eimple relation — = \- 1.
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inthoductoey remarks. l-i5

Among other functions of which tables have been [)nblished may be

i 1
mentioned log(l + 0. ^og^—

. log^co' Jos(l + 0'S log f", log—,

l + i's^/

3. In regard to the })ractical utility of any given set of tables of

the elementary functions, the following points present themselves for

consideration :— (i) the range and subdivision of the rates of interest

for which the results are tabulated, (ii) the range of tlie values of n,

(iii) the number of decimal places given in the results, (iv) the

arrangement of the tables.

(i) The rates of interest of practice are usually nominal rates

convertible half-yearly or quarterly. Now the present value or amount

of 1 at I'atey convertible m times a year is equal to the present value or

j
amount of 1 at the effective rate — for m times the ariven number of

m ^

years, and, similarly, the present value or amount of an annuity of 1

per annum payable m times a year for n years at the nominal rate j
convertible m tim.es a year is equal to tlie present value or amount of an

annuity of — per annum payable annually for nm years at the elfectivo

rate — . Ilcnce it follows that, in practice, tables of the elementary
m

functions are required for values of i ranging by small differences

of |th, or even yV^^^' from say 005 upwards.

In some tables the rates of interest range by larger differences, of

say k or i, from a minimum rate of 2 or 3 per-cent, but the values

of the functions are given for each rate convertible half-yearly and

quarterly as well as annually—the annuity payments, in the case of

the functions oj^ s;^] and — or — , being assumed to be made witK

corresponding frequency. Such tables answer much the same purpose

as those constructed for a more extensive range of annual rates, except

that they give the values only for integral numbers of years and not

for integral numbers of half-years or quarters, unless, as in Corbaux's

Tables, the values are specially given for each half-year in the case of a

rate of interest convertible half-yearly, and for each quarter in the case

of a rate convertible quarterly. For the valuation of Stock Exchange

securities, and in the determination of the yield on such securities, it is

L
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convenient to have the values of the elementary functions for each

integral number of half-years or quarters. In general, tables constructed

upon the first-mentioned plan, i.e., for effective rates ranging from a low

initial value by very small differences, are probably the most useful.

(ii) The values of n generally range from 1 to 50, 60 or 100.

Financial transactions do not, as a rule, extend over so long a period as

100 years. Hence, for tables at the higher rates of interest, say 3^

per-cent and upwards, the utility of which is practically limited to

transactions in which a yearly rate of interest is involved, a range of 1

to 60 in the values of n is sufficient. But, as regards the tables at the

lower rates (representing in practice half-yearly or quarterly rates), in

which n will generally denote a number of half-years or quarters, a

moi'e extensive range is desirable ; for example, in the valuation oi

Consols as at 5th April, 1900, at 2 per-cent convertible quarter!}', the

value of v^ or a^ for «= '005 would be required. It will be

obvious that a range of 1 to 100 in the values of n covers a period

of 50 years for a nominal rate convertible half-yearly, and a period

of 25 years for a nominal rate convertible quarterly. The value of any

one of the elementary functions for a value of n beyond the limits of

a given table may sometimes be conveniently found with the aid of the

table. Suppose, for example, that it is required to find the value of

^>i95 or ai95] at a quarterly rate of interest, for the purpose of finding

the yield on India 3 per-cent Stock as at 5th January, 1900, and that

the available tables only go up to «=100. The required values may

then be obtained by means of the relations

The results obtained in this way may not, of course, be correct to as

many places of decimals as the values upon which they are based.

Frequently, it will be found more convenient to calculate the required

values from the appropriate formulas by logarithms.

(iii) For many practical purposes, tables giving the values of v'^ to five

places of decimals and those of o^) to three or four places are sufiicient

But when large sums are involved, and it is required to obtain results

correct to the nearest penn}', greater accuracy is necessary. Suppose,

for example, that it were required to find the annuity (payable half-

yearly) to redeem a loan of £100,000 in 50 years, with interest at

4) per-cent, convertible half-yearly. The value of — at 2 per-cent to
«Ioo|



Ans. a-i.i CONTINUED PEOCESS. 147

eiglit Yilaccs of decimals is •0232027-1, so that the lialf-yeariy annuity-

payment to the nearest penny would be £2,320. 5s. Gd. The value of

to five places is -02320. Hence the hall'-vearlv pavmpnt if

calculated by a table giving the values o£ —^ to five places only, would

be £2,320, which differs by 5s. Gd. from the correct result.

(iv) The principal objects to bo attained in the arrangement of tables

are («) facility and celerity in use when numerous values have to be

extracted, (i) minimization of the risk of en-or from the use of the

wrong table, in case of an isolated reference.

The most important distinction in regard to arrangement is that in

some tables the values of the several functions at each rate of interest

are exhibited ia parallel columns, whereas in others the values of each

function at the various rates of interest are brought together. In the

determination of an unknown rate of interest the latter arrangement is

more convenient.

4. In calculations in which great accuracy is required it may be

necessary to determine the requisite values from the elementary formulas

by means of logarithms. For this purpose the table of the values of

log(l+ e) to 15 places of decimals originally prepared by the late

Mr. Peter Gray for the first edition of this work will be found useful,

in conjunction with an extended logarithm table.

In order to minimize any risk of error from mistakes in printing or

other causes, it is desirable to use independent tables for calculation and

for checking. When only one table is available, it may sometimes be

advisable to check independently by logarithms any values taken from

the tables.

5. In the construction of Interest Tables it is usual to employ,

when practicable, what is known as the Continued Process, i.e., a orocess

by which each value of the function is obtained from the value next

preceding or next following it. The advantages of this method of

procedure are (i) that, in general, it entails much less labour than would

be involved in the calculation of the values independently; (ii) that it

admits of the whole of the results up to an}' given point bein<T checked

by the verification of the value last obtained, since that value depends on

^U those that precede it. On the other hand, an error in the calculation

of any given value is carried forward by the Continued Process to every

subsequent value, so that it is desirable to verify the results by an

L 2
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independent check at sliort intervals—say, for every tenth value.

Further, an error may he introduced by the accumulation of a small

error resulting from the limitation of the number of decimal places

retained in the calculations, but this can in many cases be obviated by a

systematic adjustment ; for example, in the construction of a table of

log(l-0-i)» by repeated addition of -01703—this being the value of

Jog 1"01 to live places of decimals, while the value to seven places is

'0170333—an error of, approximately, 1 in defect in the fifth place will

arise in every three additions, but this may be eliminated by the

addition of 1 at every third operation.

6. In the application of the Continued Process to the tabulation of

the values of a given function it is necessaiy to have (i) an Initial

VcxJiie—upon which the subsequent values are based— (ii) a Worhing

Formula, i.e., a formula connecting one value of the function with the

next, (iii) a Verijication or Check Formula.

Thus, in the tabulation of the values of a^ for values of n from 1 to

100, ffioo] niay be taken as the Initial Value, ai^^=(l + i)^iT(— 1 •'is the

\ ^.re

Working Formula, and ^,7] =—:— as the Verijication Formula, to be

applied to check every 10th or 20th value.

7. The principle that a series of values tabulated by a Continued

Process may be checked by the verification of the value last obtained

depends upon the assumption that each value is employed in the

calculation of the next succeeding one. It must be remembered,

therefore, that the efficacy of a check of this nature, as applied to a

series of final values, is restricted to those cases in which each final

value is actually used in the calculation of the next. For example, in

the tabulation of (1 + z)'*, by forming log(l + z)"^ by repeated addition

of log(l + »), and taking the antilogarithms of the results, the accuracy

of the final value, say (1 + /)'"', would not be any proof of the accuracy

of the preceding values. It would prove only that the values of

log(l + i)'* were correct. The values of (l+ z)'», having been separately

obtained by taking antilogarithms, and not being employed in the

Working Formula, would have to be checked by some other method ; in

fact, the Continued Process in this case is really used, only in the

calculation of the subsidiary values of log (l + ^)".

8. A very useful check, when the nature of the tabulated function

is such as to admit of its being employed, is that obtained by the

verification of the sum of the tabulated values. This check has the
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;ulvantages of being equally efHcacious, whether the values have been

calculated separately or by a Continued Process, and of being ajijplicable

to the detection of mistakes in copying (or printer's errors in a proof),

as well as to actual mistakes in calculation. When available, it may
generally be applied to verify small sections of the resulting values,

as well as the final total.

In the tabulation, for example, of the values of v^, the accuracy of

any series of r successive values, beginning, say, with v"'+\ may be

verified by seeing that their sum =d'"+'-|- . . . +v"^+^, that is,

<im+?— a'm:\ or . In the application of this check formula, the

values of u"' and y« + '" should, of course, be independently calculated.

In this connection, the following relations will be useful:

—

m+r

m+l

m+r

m+l

ni+r y,

n.+l ^

2 log f"= - (2?«-f ?'+ 1) log y.

)ii+i -

m+r ">+r /I I ;Vi 1 e ;^i o 1 «
.^ ^, ^ i_L_z_J_: ^"t+r+n— ^m +i|— r
— *)i:— -^ :~ —

' :

ni + l »ii+l * *

m+\ m+l I

I t

The functions and do not admit of alsfebraieal
(1 + ^)"—

1

1— v'^
^

summation. Consequently, a check of tliis nature caimot be apjdied to

tallies of — and -^— except for the purpose of verifying a copy or a
S n\ a n

printed jM-oof, when the original calculations have been previously

checked by some other method.

9. An approximate check, which will sometimes be found useful, is

aflbrded by an inspection of the differences of the tabulated results.

The differences between the successive values of any function should, in

general, form a regular series, and as they will, as a rule, be comi)aratively

small quantities, any error of importance in the tabulated values will
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usually give rise to an obvious irregularity. Suppose, for example, that

the amounts of an annuity of 1 per annum for 62 to 67 years at 4 per-

cent were erroneously printed as 2o9-4ol, 270829, 282602, 295-968,

308-767, and 321-078. An inspection of the differences—11-378,

11-833, 13-300, 12-799, 12311—would show at once that the difference

between the third and fourth value is too large, while that between the

fifth and sixth is too small, and on investigation it would be found that

the fourth and fifth values should be 294-908 and 307-707, thus altering

the differences to the regular series 11378, 11-833, 12300, 12-799, and

13-311.

10. Tables of the values of (1 + ?)'*, ^•'*, s^, and a'^ may, as a rule,

be most easily constructed by actual multiplication, by means of the

Working Formulas

Sn\=s^^+(l + iy'-'; or (l + z>^^ + l;

fn\=(i^r^\+ v^; or (l + i)aj;:^—l;

the first or second formulas for s,7] and o^ being applicable according a*

the functions (1+ /)" and v"' have or have not been already tabulated.

If, however, the value of i be such that the operation of multiplying

by 1 + i would be unduly laborious, it may be more convenient to tabulate

the logarithms of the functions by means of the Working Formulas

log (l + 0"= log(l + 0"~' + l"S(l +

log f"=:log f"-'— log (1 +

log *;r=log { (1 + /)s;i^ + 1}

log fl^=log (1 + «^rrii) — log (1 + ?).

In applying the last two formulas it will be convenient—in order to

save the labour of taking antilogarithms at each operation—to use a

table of Gauss's logaritlnus, in which the value of log(l + ^) is found by

entering the table with log.r. In the case of log*;^, the modus operandi

will be as follows:—Begin with logsTl, the value of which is 0, since

ffYj= l for all values of i; obtain log(l+ «)sii by adding log(l + e) to

log«il, and enter the table of Gauss's logarithms; the result will be

log { (1 4- i) «T! + 1 } or log s 2| ; again add log (1 + i) ,
obtaining log (1 + *)s2|

,

and enter the table, which will give logKl + ^s^^^ + l} or log S3] ; and so

on. In the case of loga;!], begin with logoi], i.e., logw; obtain

log(l + ar) by entering the table, and deduct log(l + z), which will give
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Iog(l + fl'i])— log(l + or log(To] ; enter the table with this result, and

deduct log(l+ i), thus obtaining log (1 + a o))— log (1 + or logaa], and

60 on.

In each case the work may be facilitated by writing the constant

quantity log(l + i) at the top of a moveable card for convenience in

adding or subtracting at each operation, and a periodical adjustment must

be made, as explained in Art. 5, to eliminate the error resulting from the

fact that the value of log(l + i) will be correct to the number of decimal

places retained only.

11. The values of — and — may be tabulated either from the

values of s'^ and a^ by taking reciprocals, or from logs;!] and loga,7] by

taking the antilogarithms of the complementary logarithms. If the

values of — and — were calculated independently, the relation

— = -— +f would afford the most obvious and convenient method of

checking the results. As already stated, however, it is not usual to

tabulate botb -^ and -3-, since the value of one can be so easily

obtained from that of the other, and the check in question would not,

therefore, in general be applicable. In these circumstances the calculated

values of — or -3, as the case might be, could be verified either bv

taking their reciprocals and comparing the results with the values of

s^ or a'^, or by dividing i on the arithmometer by (! + ?')'*— 1 or 1— v^.

The values of -^ and —^ could also be tabulated directly, with the

aid of Gauss's logarithms, by means of the relations

log— = log r=, -log (1 + -log fl + .. .. 1
S^ Sn-l\ L {^i- + t)S,i-lU

log^ = log-^+log(l + 0-logfl+-4:r)-

12. A table of the values of P,T| at a given rate of interest may be

constructed, as explained in Chap. VII, either by taking the reciprocals

of (sn + i —1) or by entering an Annual Premium Conversion Table with

o^T-il* III 'tl^l^ connection it may be noticed that a Single Premium

Conversion Table would, in theory, afford a simple means of checking

a table of the values of a^i, since the result of entering the Conversion
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Table with an< should be v'*+'; in practice, however, this check would be

of little value owing to the limitations of the Conversion Table in the

matter of decimal places.

13. The values of (l+ e)m and vm, or of 5^1 and an\ at the elective

rate i are not often required, but they could be tabulated, if necessary,

by the continued methods indicated by the following formulas :

—

log (1 + i) ™ = log (1+ i) "I + - log (1 + i)

r r+1 \
logDm=logy ™ -| log(l + i)

(m) <m)
,

J- „ /I , -N
-

Sn] =Sh-1\ + - 2 {l + l)m

cr log sf; = log sJ + log 1 +

r—nm
(m) (m) 1 -

III r=(n-l)iH+l

, (m) , (m) ,

10grt„l =log«i| +log 1 ^^"^^"^n
"T" (m) r

« 1, -'

The formulas given above for logs,i| and log«,i,| are adapted to the

aiiplication of a table of Gauss's logarithms—the table being entered in

the one case with log s,7ZT|4- log (1 + ^)— logs
i|

, and in the other with

logfl^i^TTi—log(l + z)— log«T| . In the case of each of the four functions

(1 + <)'«, i/'"i, Sn\ , and ffii^i , a summation formula could easily be obtained

to check the tabulated values.

Although the methods indicated above are of some interest as

generalisations of the methods applicable to the functions (1 + i)^, v''\

Sn\-, and an\, the most convenient method of constructing tables of

Sn\ and a,7] in practice would probably be to multiply the values of s«i

and a^ (supposing these to have been already tabulated) by the

factor -;— . The value of this function would generally be such as to

admit of the values of Sn\ and an\ being obtained by direct multipli-

cation with the aid of an extended multiplication table, but if the
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logarithms of s^ and a^| bad been already tabulated, it miglit be found

more convenient to construct logsr;j and logff,ij by the addition of the

constant log-;— , and to take antilogarithms. The logarithms could
J[m)

be verified by tlie relations 26'n) = -:— 2s^, 2«;i]
^

-.
— S«il], and the

Jim) Jc'i)

final results by summation formulas.

14. The amounts and present values of annuities at any given force

of interest may be conveniently found by means of a table of the values

of log . The application of such a table will be sufficiently

indicated by the following relations:

gitS \ gnS
1^

log5;:i= log—g— =log
^^g

+\ogn

8

, (m) ,
e"S—

1

(5«5—

1

era— 1
log S7t| =h)g ^ =log —^ log—g— +log n

wrewi— 11 —
m

gUS 1 gUS 1 (;S \
l0gSlll= \0g -^^-^ =l0g -^^ - log -g- +l0g7»

gUS \
logfln|= loge-''^i7^,= log g h log Ji— «8 lege

&c. &e. &o.

15. As an example of the construction of a table, let it be required

to tabulate the values of —^ at 3'1 per-cent.

In this case the working formula

log-i- =log-4z: +log(l + 0-logri+ -=-,)

may conveniently be employed with the aid of Wittstein's Table of

Gaussian logarithms, from which the values of log (l + ar) may be

found, with approximate accuracy, to seven places of decimals for all

values of logo? from T'OOOOOOO to 40000000. The value of log 1-031

to eight places is -01325867. Hence, in working to seven places, it

will be necessary to take the seventh figure as 7 in two cases out of

every three, and as G in the remaining case. Also, since the initial

value log—^ is lug(l + i), which must be taken as -0132587, it will be
«i|
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best to take the seventh figure of log(l^-^) in the working formula as

successive!}' G, 7, 7. The vahie o£ log
(
1 +— j

will be found by

entering AVittstein with log— or •0132587, and that of log— bv

adding l()g(l + i) to log— and deducting logf H ) from the result.

The addition and subtraction may be performed in a single operation, by

a cross cast, the values of log^^ and log/lH—:: j being placed in

adjacent columns, and the value of log(l + i) being written at the edge

of a moveable card. The values of -3 will finally be obtained by taking

the antilogarithms of the tabulated values of log— . The logarithmic° a^ '^

work may be checked by a periodical calculation of log— from the
Cfn\

formula \ogi—\og(l—v^), and the final values by reciprocation and

summation, or by comparison of their logarithms with the values of

log -^ from which they were obtained. The whole process is shown

in the following specimen of the work :

—

n
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It will be observed that tbe values of lof'— , as obtained bv the
-'fiol

working formula and the check formula respectively, differ in the seventh

place of decimals. The discrepancy does not, however, affect the

accuracy of the tabulated value of -— to the sixth place. Tlie more
«iol

serious discrepancy between the values of S'TiI;, as obtained by actnal

summation and the summation formula respectively, is due mainly to

the fact that the values of -^ have been cut down to six places before

reciprocation, which throws out the values of «,j] in the tifth place.

If it had been required to tabulate the values of a^^ from an 8-figure

value of log 1031, it would have been better to use the formula

«7i^^(l+ 0^»l~lj ^^^ ^o set out the work as follows :

—

n
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Io.,'aritlmi.s may, therefore, be conveniently employed, with logT3- , that

is, log(l+ ?i), as the initial value. The results ohtained by the

working formula may be checked by an independent calculation of

log:^:^, but the values of log (! + ?'„) and the final values of P,!] must

be individually checked. The work will be as follows :

—

n
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decimals in loir -— from 9 and of the seventh Irom 10. The numbers

In the fifth column are obtained by continuous addition of those in

the first from the bottom upwards, and those in the final column by

taking antilogarithms. Finally, the cast of the final rolumn gives ^^ziy

and the logarithm of this—being found to agree with the last number

in the third column—checks the work of the second and third columns.

The logarithms of the first column and the antilogarithms of the

fourth column must be checked, as already stated, by individual

verification.

17. It remains now to give some account of existing Interest

Tables. For this purpose it will be convenient to specify some of the

more important tables, in order of date, and to indicate, so far as may

appear necessary, their extent or special utility.

JouN Laurie.—"Tables of Simple and Compound Interest." 1776.

This work contains, inter alia, tables of — to 7 places of decimals for

rates of interest proceeding by | from 3 to 5 pcr-ceut and for values of »

from 1 to 50.

Francis Coebaux. 1825.

These tables (which appear in the author's work on the " Doctrine of Compound

Interest") give—in addition to results which will be found in a more

— . and

cceding by i per-ccnt from 3 to 6 per-cent, and for values of n proceeding

by i from 5 to 16 and by 1 from 16 to 100. They practically give,

therefore, for m = 1 up to » = 61, the values of the elementary functions

at rates of interest proceeding by ^\ from ^ to I5 per-cent. These results

arc given to 7 places of decimals in the case of the 1st, 2nd, and 5th

functions, 7 decreasing to 6 in the case of the 3rd, and 6 decreasing to

5 in that of the 4th.

D. Jones.—" On Annuities and Reversionary Payments." 1811.

Vol. I of this work contains tables of (l + i)" and v^ to 8 places, »;^ and

o^l to 6 places, -;- to 8 places, and log v" to 7 jilaces, for all

values of n from 1 to 100, and for rates of interest proceeding by J from

2 to 5 per-ccnt and thence by 1 to 10 per-ccnt.

, and '—
:—3^ for values of j \m
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P. A. ViOLKiNE.—"Xouvelles Tiiblos pour les calculs d'Interets Simple et

Composes, &c." Deuxieme edition. 185 1.

Some of the tables which wei-e first published in this work have been repro-

duced in Spitzer's later and more extensive collection; the following,

however, call for notice :

—

T.iWe
No.
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given in parallel columns for each value of i' proceeding by J from f to

10 per-cent. The values of a',71 are given to 5 places up to w= 13, 4 places

from » = 13 to 15, and 3 places from n = 26 to 100; those of the multiplier

generally to 3 places, but in certain sections of the table to 4 places.

Lieut.-Col. W. H. Oakes.—" Tables for finding the Ilalf-yearly Rate of Interest

from 1^ per-cent upwards, realized on Stock or Bonds, bearing 1^, IJ, 2,

2i, 2\, 2|, and 3 per-cent Half-yearly Interest, issued at any premium and
redeemable at par in any number of half-years not exceeding 60." 1S89.

These tables give, to the nearest \d., the values of £100 {g-i)a:;;\ for ^=015,
•0175, -02, -0225, -025, •0275 and •OS, i = 0125, -013125, •01375,

(^-•00625), and « = 3, 4, 5, . , . . GO, together with the additions to the

tabulated values corresinniding to an increase of \d.. Id., 2)d., .... Is. 3rf.

per-cent in the value of i.

S. Spitzer.—" Tabellen fiir die Zinses-Zinsen und Renten-Rechnung. 4th edition.

1897.

These tables give (a) the values of (1 + i)", u", s,7+Y] — 1, a^ and -^ for all values

of n from 1 to 100, at rates of interest proceeding by \ and \ from to 6

per-cent, and thence by \ and \ to 10 per-cent, also at 3^^ per-cent (being

4 per-cent on 105), and at the rates of interest corresponding to the following

rates of discount: 1, 2, 2i, 2\, 2g, 2|, 2|, 3, Z\, Z\, 3|, 4^ 5, 5^, and 6

per-cent (122 rates in all); (J) the values of — at the rates of interest

corresponding to the rates of discount specified in (a), with the addition of

4 per-cent.

All the results are given to 8 places of decimals.

H. MuKAT.—"Tables d'Interets Composes, de Depots, de Rentes et d'Amortissements."

1901.

These tables give the values of (1 -f i)", 8^:^! - 1, and -^ for 100^ = ^ to 2|- by

increments of \{n=\ to 200), 2| to 3 by increments of \ (n= 1 to 150), 3^- to 4

by increments of 5 (?i = l to 150), and 4^:10 8 by increments of J (ra= l to 100);

of t)", a^ and —- for the same range of values of i (n= 1 to 100) ; and
Sn+ll-1

of the corresponding functions at rates of interest payable in advance.

Preceding the tables are 17S pp. of theory and examples.

T. R. Stl-bbins.—" Tables of the Present Values of Aimuities." 1905.

The tables given in this work include a table of the present values (to 3 places

of decimals) of an annuity of 1 per moni\i at 3 to 8 per-cent per amuim

(T)y increments of -|) convertible monthlij.
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A.. Arnaudeau.—" Tables des Interets Composes, Annuites et Amortissements."

190C.

These tables give the values of (1 + i)" to 10 places of decimals and —r to

7 places for 100; = i to t'cr (n = l to 400), 1 to 2^"^ (?( = 1 to 200) and

3 to &rV (" = 1 to lOUj ; also the values of «" to 7 places for lOOi = 2 to CiV

(n=l to 100); of a^ to G places for 100j = j to tV (" = 1 to 200) and

1 to CfV (^1 = 1 to 100); and of {l + i)Ti for 100i = l to 5^0 (n = l to 12).

The rates of interest proceed in all cases by increments of ^g.

J. A. Archer.—" Compound Interest, Annuity and Sinking Fund Tables." 1907.

These tables give the values of (l+ i)" and v" to 10 places of decimals, and

8i,\, an< and— to 8 places, for 100i = l to 2 (n= l to 200) by increments

of tV, 2 to 4 (?r= l to 100) by increments of J and 4 to 8 (n= l to 50) by

increments of y.

J. Deghcee.—" Table of Bond Values." 1908.

This work gives the values pei-cent, to yield any rate convertible half-yearly

from 2 to 6 per-cent by increments of ^V and ^, of a Bond bearing interest

at 2|, 3, So-, 4, 41, 5 or 6 per-cent payable half-yearly and redeemable in

J to 50 years by increments of ^ and in 52| to 100 years by increments

of 2| ; also the corresponding values for quarterly dividends and yields,

and some supplementary tables. The values are tabulated to 4 places of

decimals.

D. M'KiE.—"Tables of Compound Interest and Annuities." 1911.

These tables give the values of r", an^, (l-|-i)" and s,7, to 9 places of decimals for

1001 = 1^*6 to 3 by increments of ^V» ^^^ ^OJ" "= 1 to 120 ; also the values of

-^ to 7 places for lOOi = -| to 3 by increments of J, and for n = 1 to 60.

Lieut.-Col. W. H. Oakes.—"Tables of Compound Interest." 1912.

These tables give the values of (1 +i)", v^, s,;i and a^i to 5 places, for all values

of n from 1 to 100, at rates of interest proceeding by ^ from f to 10 per-cent.

E. Pekeiue.—" Tables de rinteret compose." 1912.

This work includes tables of (1 + i)" to 10 places of decimals, u" to 7 places,

a,7i to 7 places, and a^ to 8 places for 100? = |- to 1| (?i=l to 300) by

increments of -^g, in addition to numerous other tables at rates of interest

proceeding by larger increments.

In addition to the foregoing, the following speci.nl tables may be

mentioned :

—

W. S. B. Wooliiouse's Tables of the values of S and log 8, to 5 places of decimals,

for values of i proceeding by ^ fioin ^ to 10 pcr-ccnt. J.LA., xv, 125.

e^—

1

W. II. M AiCEiiAJi's Table of the values of log to 7 places of decimals for values

of X proceeding by 'Ol from to 10*4 with supplementary columns by which

tlie values of tlie function for intermediate values of x may be calculated.

J. I. A., XV, 4:i7.
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D. J. McG. McKenzie's Tables of the vjiliics of log ~ (to 7 places) and •^^'
(to

8 increasing to 10 pl;ic.'s) for >n = 2, 4, 12, 26, 52 and oo, at rates of interest

proceeding by J from 2.J to 10 per-cent. J.I.A., xxiii, 183-4.

P. Geat's Table of the values of logio(l + i) to 15 places of decimals for values

of i proceeding by ^\ from to 10 per-cent. First Edition of this Work,
pp. 166-7.

Interest Tables of limited extent will be found in many text-books

and works of reference. A few tables, reproduced from the " Short

Collection of Actuarial Tables", printed by the Institute of Actuaries

for examination purposes, are appended to this work for the convenience

of students.
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CHAPTER IX.

FOKMULAS OF TUB INFINITESIMAL CALCULUS.

1. In the investigations of the following chapter an elementary

knowledge of the notation and methods of the Calculus of Finite

Differences and the Infinitesimal Calculus will be required. For the

elements of the Calculus of Finite Differences, reference may be made

to Part II of tlie Text-Booh; in the present chapter it is proposed

to give some account of the elementary methods of the Infinitesimal

Calculus.

2. The Infinitesimal Calculus is practically restricted in its applica-

tions to functions which possess (it may be within certain limits) the

property of continuiti/, and it will be necessary, therefore, to consider

in the first instance the nature of a continuous function.

3. A quantity or magnitude is said to admit of contimioiis variation

between certain limits when any intermediate value ma}'- be assigned

to it between those limits. Thus, in the expression v^, denoting the

present value, at the effective rate of interest i, of 1 receivable at the

end of t years (where t may be either integral or partly integral and

partly fractional), the index t admits of continuous variation between

and any positive finite value, and over any given range of say « A^ears

an infinite number of different values may be assigned to it, each

successive value differing from the preceding one by an infinitely small

quantity.

4. A quantity which docs not admit of variation is called a constant

quantity. Thus, in the illustration given in the preceding article, if

in a given problem the rate of interest be fixed, the quantity v will be

a constant for the purposes of that problem. On the c'.her hand,
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the exj)ression v* might, for the purposes of some other prohlom, be

used to denote the present value, at any effective rate of interest within

certain limits, of 1 receivable at the end of a fixed term of t years

;

in that case t would be a constant, and v would admit of continuous

variation within the specified limits.

5. One variable quantity is said to be a function of another when,

if any other quantities involved in the expression of the former in

terms of tlie latter remain uncl)anged, the value assigned to tlie latter

determines the value of the former. Thus, v^ is a function of t,

because for a given constant rate of interest i its value is determined

by the value of t. Similarly, v*' is a function of v or i, because for

a given constant value of t its value is determined by the value

assigned to v or i.

6. When one variable quantity is a function of another, the

latter is called the independent variahle, and the former the dependent

variable. In investigations of a general character, the indei)endent

iind dependent variables are usually denoted by x and y respectively,

and the relation between them is expressed in some such form as

y^/G*-')' y=-^('^)5 o^' y= '/>('^')- Here a: is the independent \'Vix\vCo\^,

and y is the dependent variable, and the value of the latter can be

determined for any given value of the former, if the form of the

function f, F, or <^, be known.

7. A function f{x) is said to be a continuous function of x for

all values of x between the limits a and b when, for each value of x
between those limits, (i) f{x) has a finite value, and (ii) an infinitely

small change in the value of x produces an infinitely small change

in the value oi f{x).

For example, v* is a continuous function of t between anv finite

limits, for it assumes a finite value for any assigned finite value of t

and, further, the change of y'(y''— 1), produced in its value bv a

•change of h in the value of t, becomes infinitely small when h is

indefinitely diminished.

8. If /{x) be a continuous function of x for all values of x
between ar= « and x=^h, then, since each infinitely small chano-e in

the value of x produces an infinitely small change in the value

•of /"(.r), it follows that as x changes from a to h, f(x) must assume

at least once every intermediate value between f(a) and f(b). It

may be noted also, as a necessary consequence of this, that if f(a)
and f{b) have different siyns, there must be some value of x between

it 2
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X^

a and b for which /(.r)= 0, for in changing from a positive to a.

negative value the function must pass through zero.

9. A continuous function may be rei)resonted geometrically in tlie

following way :

—

Let OA and O^ be measured to the right along X to represent

a and h respectively, and let the ordi nates AM and jB iV be erected

at right angles to O A'to represent (on a proportionate scale) /(«) and

fih) respectively. Then, if

f^oc) be a continuous function

of X from x=^a to x=-h, it

follows from the definition in

Art. 7 that f{x) has a fniite

value for each value of x

intermediate between a and

h. Hence, if C repre-

sent any such intermediate

value of X, an ordinate C Q
may be drawn to represent (on the same scale as before) the

corresponding value of f{x). Suppose an infinitely large number of

such ordinates to be drawn to represent the successive values assumed

^jf{x) as X passes by infinitely small increments from the value a to

the value h. Then it is clear from what has been said in Art. 8

that the ends of these ordinates would form a continuous chain of

points from 31 to IT. This chain of points, or curve^ forms a

geometrical representation of the function y(j;) from x=-a to .r=:5.

10. It would not, of course, be possible to actually construct the

curve representing any given function by the method just indicated.

There are, however, certain special functions—such, for example, as

those represented by a straight line, a circle, and an ellipse—for which

a continuous curve may be drawn by some mechanical contrivance.

Moreover, the general course of any function may often be indicated

with sufficient accuracy for practical purposes by erecting a number

of ordinates for various values of the independent variable, and drawing

afreeliand curve through their ends.

Take, for example, the function {\-\-iY.

At the point in tlie line X' O JT erect an ordinate B to

represent unity—or, what is the same thing (1 + e)". Take O Ai,

A\ Ai, A-i A3, &c., to the right along X, and 0«j, a\ a<i, a^ a^, &c.,

to the left along X' each = B ox unity, and erect the ordinates-



Arts. 8-11.] GEOMETRICAL REPRESENTATION. IGS

AiBi, A-iBo, A3 ^3, &c., to represent (1 + 0, (1 + OS (1 + 0'.

respectively, and the ordinates a, ii,

<i2 hi, 03 &3, &c., to represent v,

v"^, v^, &c., respcctivel3\ Then the

points .... is, h.2, &i, B, Bi, B-2,

B3, .... lie on the chain of points,

or curve, representing the function

{1 + i)^, and some idea of the (jenernl

course of the function may be gathered

by drawing a freehand curve through

these points as shown in the diagram.

It will be readily seen that the

ordinate of the curve tends, ultimately,

to become zero in the direction O Jl'

and infinitely great in the direction

OX.
11. The diagram given in the last

article may be further utilized for the

purpose of obtaining a geometrical

representation of the functions s;;],

Sn], Sn,, «»7], "n , and (in\. -t or, let

perpendiculars B Xi, Bi K21 ^2 J^3t

&c., be drawn from B, B\, B2, &c.,

to Ai Bu Ao B2, A3 B3, &c., and

let perjjcndiculars ij k, b.^ lc\, S3 ^2»

&c., be drawn from hi, h^, bs, Sic, to

O B, oi hi, tti hi, &c. Then, since

O Ai, Ai A2, A2 A3, &c., O ax, ai

«2) ^^2 ^3) &c., are all equal to unity,

and the ordinates O B^ A-^Bi, A-.Bi,

<fce., ttihi, ttibi, «3&3, &c., respectively

represent 1, (1 + z), (l + ^)^ <^<^-> ^j ^">

v^, &c., it is clear that the rectangles

Ki O, K2 Ai, K3 A2, &c., represent

geometrically the products of unity,

and 1, (1 + 0, (1 + 0", «^c., and that

the rectangles /.: Oi, ki 02, ^2 a^, &.C.,

represent geometrically the products of unity and v, v-, v'^, &c.

&c.,

X
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Hence, if An and O a,i be measured to the right and left

respectively of O, each =: n O £ or n, and if a rectangle be constructed

on each unit of the bases An On in the same manner as those-

constructed in the diagram, the total area contained by the n rectangles-

constructed on O An will represent 1 + (1 + + (1 + 0' + • • •

+ (1 + /)'*"! or .sjTi, and the total area contained by the n rectangles-

constructed on Oon will represent v + v^-\-v^+ . . . +v'^ or a;;].

Next, let each of the bases OAi, Ai A^, Odi, a^ Oo, Sec, be-

divided into m equal parts, let ordinates be drawn to the curve from

the points of sub-division, and let a new series of rectangles be-

constructed by drawing perpendiculars from the point at which

each ordinate meets the curve to the next succeeding ordinate-

to the right. Then the ordinates to the right of OB will be-12 3 _l_

respectively equal to (l+ iy\ {l + iy"-, (l + iy", &c (l + O" "Sand
1 2 £

those to tlie left of OB will be respectively equal to i-"', t-"', f"', &c. . . . r".

Hence, since the bases of the new series of rectangles are all = —
ym

the total area contained by the new rectangles now constructed on the-

base An will represent

-[l + (l + 0-+(l + 0'^+.-.+(l + 0"~"'] or Sn\m

and the total area contained by the new rectangles constructed on Oa„
will represent

1 , - —
X (m)— (i;'"+ f'»-|- . . . -f V") or Oul .

Ill

If now oji be indefinitely increased, the area contained by the resulting-

series of rectangles on the base An will ultimately coincide with the-

Hgure contained by OB, O An, An Bn, and the intercepted portion

of the curve, and, similarly, the area contained by the rectangles on

the base Oon will ultimately coincide with the figure contained by

OB, Ofin, ('nl'n, and the intercepted portion of the curve. But, if m

be indefinitely increased, Sa[ becomes s";^, and ai\ becomes d^. Hence,

the area bounded by OB, O An, An Bn and the curve geometrically

represents Sn], and the area bounded br OB, Oa,,, fin ^n and the curve

geometrically represents dj^.

12. The foregoing explanation of the nature of a continuous

function may assist the student to understand thi' general character
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of the i^'oblems to which the methods of the Infinitesimal Calculus

are more particularly adapted.

The ordinary arithmetical or algebraical Calculus and the Calculus of

Finite Differences furnish methods of dealing with the values of a

function corresponding to any specified values of the independent

variable, and with the changes in the value of the function resulting

from any finite changes in the value of the independent variable. The

Infinitesimal Calculus, on the other hand, affords a means of dealing

with problems in which account has to be taken of all the values

assumed by a function in passing from the value corresponding to one

value of the independent variable to that corresponding to another, or

of the change in the value of the function corresponding to an infinitely

small change in the value of tlie independent variable. The Differential

Calculus deals primarily with the latter class of problems, the Integral

Calculus with the former.

13. When a variable quantity changes from one value to another,

the amount by Avhich the latter value exceeds the former is called the

increment of the quantity. An increment in the value of the

independent variable x is frequently denoted by 7«, Ao:, or hx, and the

corresponding increment in the value of the dependent variable y by

k, Ay, or hy.

14. Let y\>Q2i continuous function of x for all values of x between

certain limits ; Avithin those limits let x receive an increment h, and let

the corresponding increment in y be k, so that, if y=fi(x),

y+ k=fix+ h),

and k=f(x+h)-y=f(x+ h)-f(x).

Then it is clear that the rate of change of y corresponding to an

infinitely small increment of x will be measured by the limiting value,

whe)i /i= 0, of V or v • This limiting value is called the
h h ^

first derived function or differential coefficient of y according to a*,

and is denoted by/''(a:),or ^, or -^^—

.

dx dx

Thus, /'(.r) or ^ = \AhJ- y"^^ '

Tlie identity -j- =-f\x) may be written in the form

du=f(x)dx.
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with the meaning that the limiting value of the ratio of Ay tof'(x)^x
is unity.

15. A geometrical interpretation of the differential coefficient of a

function may he ohtained in the following way :—Let the curve in the

annexed diagram he the

furve rejjresenting the

function f(x), and let

OA-=x, so that the ordi-

nate A M represents y
or f(x). Take AB=h
and draw the ordinate

JBJV. Then B N=y-\-k

or f(x + h). Draw 31

Q

perpendicular to B J\\ join

JVilf and produce it to cut

iVO JVBOX in R. Then NQ=Jc,^w<\. -~^ or -=-^
Al (^ B M

Now suppose li to he indefinitely diminished. Then the points B and N
move up to the points A and M respectively, and the line NMB tends

towards a limiting position 31 T, say, and becomes a tangent to the

/(^ +/0-/(^)
h

h h

curve at the point 31. Hence, the limiting value of'

A 31
is

—

—, where 31T is a tangent to the curve at the point 31. In
AT' ° '

dy A 31
symbols ^^ or /(^)=-^.

16. The greater the value of f'(.v), the greater will be the ratio

A 31'—— , and the greater, consequently, the angle which the tangent to

the curve makes with OX. It appears, therefore, that the differential

coefficient affiirds a measure of the gradient or sfeejmess of the curve at

any given point.

It is evident, also, that a small increment in the value of x will

()roduce an increment or decrement in the value of y according as /'{x)

is positive or negative. Hence, if y (a:) is positive for all values of x

over a given range, then f{x) increases with x throughout that range,

-nnd, conversely, if f'{x) is negative for all values of x over a given

range, then throughout that range f{x) decreases as x increases.

Again, \if {x) is positive for all values of x throughout a certain range
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up to x=a, and negative for all greater values of x throughout a certain

range, or, in other words, if f'{x) changes from positive to negative as

X passes through the value a, then f{x) increases with x up to x=a,

and then decreases. Similarly, if f'{x) changes from negative to

positive, as x passes through the value a, then /{x) decreases as x

increases up to x=^a and tlien increases. Now, as explained in Art. 8,

in changing from positive to negative, or from negative to po.sitive,y'(.r)

must pass through zero. Hence, \i f{x) increase with x up to x=^a

iiud thereafter decrease, or vice versa, y'(a)=0. When a function

increases up to a certain value of the independent variable and then

<lecreases, it is said to have a maximum value, or to be a maximum for

that value of the variable; and when it decreases as the variable

increases up to a certain value and then increases, it is said to have a

minimum value, or to be a minimum for that value of the variable. The

result just obtained may, therefore, be expressed in the statement that,

if f{x) is a maximum or minimum for x=a, f(a)=0. It will be

shown hereafter, analytically, that this is a necessary condition, altliough

not the only necessary condition, for the existence of a maximum or

minimum.

Geometrically, it will be obvious that the equationy'(^)= expresses

the condition that the tangent to the curve at the point corresponding

to the value a of x should be parallel to O X, and it is clear that this

will be the case at any point at which the curve attains a maximum or

minimum distance from O X, at which, that is to sa}', /'(x) is a

maximum or minimum.

17. The operation of finding the differential coefficient of a function

is called d/jTerentiat/ng the function. Any given function which admits

of differentiation may be differentiated from first principles by finding

f(j;-\-h)—f(x)
the limit of the expression

^
wlien li =0, but the process

k

may in many cases be simplified by the aid of the following general

rules :

—

(i) The differential coefficient of a constant is zero.

This is obvious, since a change in the independent variable does not

produce any corresponding change in a constant.

Hence, additive or subtractive constants (as distinguished from

constants involved as coefficients or indices of variable quantities)

disappear on differentiation.
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(ii) The differential coefficient of the algebraic sum of a number of

functions is the sum of the differential coefficients of the several

functions.

Let i/=7c + v + tv . . ., where ti, v, iv . . . are functions of .r.

Then, if Ay, A?^ Ar, Aiy . . . are the increments of y, ii, r, w. . .

corresponding to an increment of A.r in x,

y -f Aj/= 2/ + A?/ + f -j- A I' + R' + A a- 4- . . .

whence Ay=A?/ + Ay-f Ait"+ . . .

Aw ^tc Ay Ait'
and ^ = + + +..

,

Aor Ao? A:r Ax

wliich becomes in the limit, when Ax is indefinitely diminished,

du die dv dw— =
1 1 h...

dx dx dx dx

(iii) The differential coefficient of the product of two function.; is

the sum of the products of each function and the differential coefficient

of the other.

Let y^^uv,

where it and v are both functions of x.

Then %= (?< -\-Au) (v + Ai') — vv'

=.iiAv + vAic + Ait . Av

= uAv + (v + Av)Au

All Av ^ ^ . Alt.

and -^ =7f --+(?; + At') T-.Ax Ax Ax

whence, in the limit, since v-\-Av becomes v,

du dv du

ax (IX clx

If V be a constant, C say, so that i/= Ct(, then by rule (i) it^r

^ di/ du
differential coefficient vanishes, and -;- = L --

.

dx dx

(iv) The differential coefficient of the product of any number ot

functions is the sum of the products of the differential coefficient of

each function and the remaining functions.
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Let y^nvio.

Put v\v^=z. Tlien y=.uz

di/ dz du
and — =ii-T- +z-r •

ax ax ax

^ , . dz dto do
But since z= i'w, —-=y— +iv-r-.

dx dx dx

du dw du dv
.'. -j- =tlV— +V10— +tvu—

.

dx dx dx dx

This result n^ay be written in the form

—

1 di/ 1 dii, 1 dv 1 dio

y dx u dx V dx lu dx

and can obviously be extended to the product of any number of

functions.

(v) The differential coefficient of the quotient of two functions is-

the result obtained by deducting the product of the numerator and tlie

differential coefficient of the denominator from the product of the-

denominator and the differential coefficient of the numerator, and

dividing by the square of the denominator.

n
Let V= ~ •

tt + ^ii u v^u—uAv
Ihen At/= -— = -^——,^ •^ v + Av V t'(y + AiO

whence

and, in the limit,

Au Ay

aij _ Ax Ax
Ax r(f + Ai-)

di/ 1 / du dc \

dx v-\ dx dx)

This result may be written in the synnnetrical form

—

1 dy 1 du 1 dv

y dx u dx V dx'

(vi) The differential coetHc-ient of // according to x, wliero y '^ •"»

function of u and w is a function of x, is the product of the differential

coefficients of y according to u and u according to .r.
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For let Ay and \u be the increments of y and u corresponding to an

increment of Ajt in x.

Ay Ay Au .. ,, „
Then ir- = ir--^ identicallv,

A.r Aic Ax "^

whence, in the limit,

di/ (Ji/ (In

dx du dx

'

18. It is now necessar}' to determine the differential coefficients of

those functions which occur most commonly, alone or in combination, m
practice. Most of these must be deduced from first principles.

(i) To find the differential coefficient of a rational power.

Let y= x''\ and first let n be integral.

Then — =Lt/,=o -,

dx 11

The terms after the first, being finite in nuniber, vanish when h

becomes infinitely small.

Hence, if n be integral, j- =ih^»-'. Next, let n be fractional, and

T^ - where r and s are both integral. Then y^-=x^.

Now, by the result just obtained,

~-^^--<-=su^-^= sx s and -^-^ =rx'-K
dy -^ dx '

and, by Art. 17 (vi), -3— = -—— • --- •
*'

^.r dy dx

dij 1 , r !:_!
Hence dx= '^E^"''' = ^

""'
'

SX s

Lastly, let n be negative and = — <,

Then y= —-.

Now, by Art. 17 (v), ~j^- = —^^^ ,
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— tx^-i
which, since i is positive, = — = — /j;~'^+'*

;

ax

Hence, if }i be any rational quantity, positive, negative, or fractional,

dx

(ii) To find the differential coefficient of an exponential.

Lot ij— e^.

flu pX + h fiX ph "I

Then f = \,iuJ—r— =e-\AuJ—r^ .

ax fi h

the limiting value of which, when h becomes infinitely small, is 1.

Hence
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Now, by Art. 17 (vi), since ^ is a function of x, and e^ is a

function of i/,

deV _(ley dy

dx dij dx
*

But, by example (ii) of this Article,

Hence

whence

Since

it follows that



^rts, 18 23.] SUCCESSIVE DIFFEnENTIATION. 175

nence —— = c^ logeCloge rr

y ax

and -• = c-'XogeCio^eg g'^ .

20. The result of diflereutiating -,- aceordinc^ to x is called the
ax

second d{/ferential coefficient or second derivative of y. The second

(liH'erential coefficient of y is denoted by the symbol y-, or, if y=^f{x)^

^y f"{^)- *^imihirly, the result of repeating the operation of differentia-

tion n times in succession is called the «th dillerential coefJicieut or

derivative, and is denoted by -,-', ory'"'(>r).

21. If y be a product of two functions of x, u and v, It mav be

easily shown, by a method similar to that employed in establishing the

IBinomial Theorem for a positive integral exponent, that

d"u d»v ilu J«-'y nin— V) dHi d"--'^v

dx'^ dx'' dx dx"-^ 2 dx^ dx'*'^
-r

• .
•

d^''-ht dv d^'u
"*" '*

dx>'-' 'dx'^dx>''^'

22. U ?/— ao+ aiX+ a2x'"-+ . . . + ff„.r",

then ~ =ai + 2aoX + Sa3X-+ . . . +na,iX»-^
dx

'^ =2«',+ 2 . 3a,x+ . . . + «0j-l)ff„a'»-2

and
Z^.='^'--

Hence, if y be a rational integral function of x of the ?«th degree, each

derivative is a function of a degree one lower than the preceding

derivative, the Htli derivative is a constant, and all higher derivatives

vanish.

23. Let f(x) be a function of x, whicli admits of being expanded in

a convergent series in powers of x for all values of x within a certain
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rano-e. Then it may be showu, and will here be assumed, that tht>

function and its successive derivatives are continuous within the

specified range of values of x.

Assume that /(.r) = ^o + «iar+ OnX-+ a^x"^+ • • •

Then /'(.r) = «, + 2fl'.,a:+ 3ff3.T-+ . . .

f\x)= 2ff2+2.3a3^+ ...

• •

/<«'(a;)= n\an+...

Put :r=0 in these equations. Then

«o=/(0) ; a,=f{0) ; a,= i/"(0)
; &e. . . . a„=: ^-^/'«'(0),

where /(O), /'(O), /"(O), &c., denote the results obtained by putting

x=0 in /'(a-) and its 1st, 2nd, t%c., derivatives.

Hence, by substitution of these values in the original expansion, it

follows that

/(^) =/(0) +^*/(0) + |^,/"(0) + . .
. + ^£/"{^) + .

.
•

Again, let /(.r)- </>(« + ^)-

Then f\x) =4>'{a + x) '^^^ = 4>'(" + -^O

f"i^)= j^^^'(ia + x) = cl.\a + x) ^tf) =,/,"(^' + ^),

and so on, whence, if x be put =0,

f(0) = cj.(a) fiO) = ^'ia) ; /"(0) = c^"(a) ; &c.

Hence, by substitution,

c{,(a + x) = c{>(a)+xcl,'ia) + ^] <}>"(a) + ...

The expansions just obtained arc known as Maclaurin's and Taylor's

Theorems respectively, and it must be borne in mind that their

ajjplieability in any given case depends upon whether the function

full'ils the assumed conditions.

As an example of the application of Maclaurin's Theorem, let it be

required to expand c^ in powers of x If /(x)=c*, then/'(a:)=e*,
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f'{x)= e^, and generally /<«'(a;) = e-^. Hence /(0) = 1; /'(0)= 1;

/''(0)=1; and/<»'(0)= l; whence

,.= ! +,+ _+ _ + ... + ^_^_ + ...

This series is known to be convergent for all values of n.

Again, as an example of the application o£ Taylor's Theorem, let it

be required to expand (a + .r)'* in a series of powers of x.

Here ^<'\a)=?j(;i— 1) . . . («— ;•+ !)««-'•

u(n— 1)
Hence (a + .r)"=a«+ ?2ff'^-'a;H ^-^-^ a"--x-+ . . .

If 11 be negative or fractional and x be >«, this series is divergent,

and, in that case, therefore, Taylor's expansion would not hold.

24. It has been shown in Art. 16 that if a continuous function

/'(.r) is a maximum or minimum for the value a of the independent

variable, theuy'(a)= 0. It will now be desirable to investigate the

conditions for a maximum or minimum analytically. A maximum

value of a continuous function is one which is greater, and a minimum

value is one which is less than the neighbouring values on either side.

In symbols, if /'('*-') ^® ^ maximum for x= a, then, for small values

of Ji, f{a+ h)—f(a) and /'(«— /*)—/'(«) must both be negative, and,

similarly, if it be a minimum, then these expressions must both be

positive. Xow, by Taylor's Theorem,

Aa + h)-J{a) = hf(a)+!^f"(a)+!^f"(a)+ . . .

and /(«-70 -f(a) = -hf'{a) + --j/'W - ~f\a) + . . .

If/(«) be not 0, then /(« + 7^ -/(a) and /(«-7i) -/(«) will have

different signs, for, since h may be made indefinitely small, the signs

of the right-hand sides of the two equations will be determined by that

of f'{a). But, in order that f{x) may be a maximum or minimum for

oo=-a, f{tt + 1i')—f{a) and /'(«— 7^ —/"(«) must have the same sign.

Hence, for a maximum or minimum, /"'(«) =0. If, now, /"'(«) be

positive, then f{x) will be a minimum for x=a, wliile, if f"{a) be

negative, fix) will be a maximum. But, if y"(a)=0, theny" (a) must

also be 0, in order thaty(ar) may be a maximum or minimum for a?=a,

N
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and /"(r?) will be a maximum or minimum according asy"^'((7) is negative

or positive, and so on. Hence, generally, y(.r) will be a maximum or

minimum for x=:a, if the first derivative'which is not for this value

of X is of even order, and it will be a maximum or a minimum,

according as this derivative is negative or positive. In order, therefore,

to find the maxima or minima (if any) of a given function of a\ f{x)

say, it is necessary (i) to find the values of x which satisfy the equation

f'(x)=^0, and (ii) to examine the corresponding values of the

successive derivatives until a derivative is reached which does not

vanish.

It may be observed that the maximum values of a function will not

all necessarily be greater than its minimum values, for a maximum or

minimum value is determined with reference only to the immediately

neighbouring values of the function.

25. It has been indicated in Art. 4 that a quantit}' regarded as a

constant for the purposes of one problem may become an independent

variable for the purposes of another. In some problems two or more

quantities contained in the expression of a function may have to be

regarded as variable, or susceptible of continuous variation. In these

circumstances the function would be said to be a function of two,

three, &c., variables, as the case might be, and the differential coettieient

of the function according to any one of the variables x (the other

variables being considered for the moment as constants) is called the

partial differential coefficient according to x, and is often denoted, for

purposes of distinction, by the special symbol --.
ex

Thus, if u-=f{x,y),

-_Lt,=„ .

Let ^u denote the increment of u when hath x and y are supposed

io receive increments, the former of h and the latter of k.

Then A u=f(x+ h , y + k) —f(x, y)

=f{x + h,y + k) -f(x, y + k)

+f{x,y + k)-f(x,y).

f(^v+Ji,y+ k)-f(x,y + /ii)

Now, as h is indefinitely diminished,
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CTKOC tl "^ A/

)

approaches the limiting value ——''-—
, and when k is indefinitely

ex

,. . . , J /(•''>,'/+ ^i^) —/(-'*-% .y) , .1 T .-. , f/G^, y)
diminished — -^-^ approaches the limiting value :^-^—^~

,k '

dy

, ., ?lf(x,y-\-k^ . df(x, I/) ^^ .,,,..,
while becomes —;r- ^^ . Hence, m the limit, the relation

ex ex

Au=J'{x + Ji , 1/ + k) —f(x, 1/) may be written in the symbolical form

du= ^r- • dx + :r- • dl/.
OX Cjj

Bv similar reasoning, this relation can be extended to any number of

variables, so that, if ii=f{x,i/, z . . . ),

du= / dx+ ^dt/+ i^dz+ . ..
ox cy cz

Suppose now that u^'{o,w), where both v and w are functions of x.

Then, from the above,

du= ^ 'dv+ ^dio.
ov tiio

which may be written in the form

, df dv
, , df div

,aw= r- • —- dx+ ::— • ~r- ax.
ov dx 010 dx

du df dv
, df div

Hence =A +^
dx ov dx cw dx

26. It remains now to explain the notation and elementary methods

of the Integral Calculus.

27. Let <{>{x) be a given function of x; then <^(a) will be the value

of the function corresponding to x=a, and (f>(b) will be the value

corresponding to x=b. Now let h— a= nh, and let it be required

to find the value of A[^(rt-f A) + <A(«^ + 2/0 + • • • +s6(« + «/*)], that is,

the sum of the products of each successive value of the function and

the increment in the value of x. The evaluation of this sum, which

may he symbolically denoted by 2^~ <i>{oc)h, is a problem in finite

summation, and, as such, may be solved by the methods of algebra or

finite differences. But suppose h to be indefinitely decreased. The

number of terms comprised in 2 will then be indefinitely increased, and

N 2



180 FORMULAS OF THE INFINITESIMAL CALCULI'S. [Ohapt»rIX.

as X clianges bj infinitely small increments I'rom a to b, (f>{x) will

assume in succession each corresponding value from </>(«) to 4>{b). In

these circumstances, the limiting value of the sum (if such a value

exist) is called the definite integral of ^(ar) between the limits a and J,

and is denoted by / (f)(x)(Lv, the symbol / being a long .f (the first

letter of the word "sum"), and the dx denoting that the increment h,

by which each value of 4>i^) ^^ ^^ ^^ multiplied, is to be indefinitely

diminished. The evaluation of this sum is tlie fundamental problem of

the Integral Calculus.

28. A geometrical representation of a definite integral may be

obtained in the following way :

—

Lot the function <^(a') be represented by the curve shown in the

annexed diagram, in the manner explained in Art. 9, so that the

ordinate of the curve at any point is the value of (f>(x) corresponding

to the value of x represented by the distance along O X. from to the

foot of the ordinate. Let OA = a and 0£=b, let AB be divided

into n parts, each = h, and on each of these parts let a rectangle be

constructed as shown in the diap'ram. Then

A JI=^<jj{a), i^ A^=<jf>(&), and the area of any one of the rectangles

will be h<f>(a + rh). Hence the whole area represented by the rectangles

constructed on A B will be 2 "^ cfi(x)Jt. Now suppose h to be

indefinitely diminished. In these circumstances the number of rectangles

wiU become infinitely large, whik their bases will become infinitely

small, and their total area will ultimately coincide with that contained

by A B, A 31, B N, and the curve 11 N. Hence the area contained



Arts. 27-30.1 EVALrATION OF I^TKORAr>. 181

by the ordinatos A M and B y, tlie base B A and the intercepted

portion of the curve forms a geometrical representation of / (t>(x)(Jx.

29. The applications of the Integral Calculus to the Theorv of

Compound Interest may now be illustrated. For it has been shown in

Art. II that if a curve be drawn to represent the function (l4-?)-^',

then the area contained by the base 0«„ drawn to the left along O X'

to represent n, the ordinates O B and Unhn and the intercepted portion

of the curve forms a geometrical representation of ar;7[. But in the

notation of the Integral Calculus, this area is = / v'dt.

/rtn
vhlt.

rvn.

Similarly, ^fl= / (1 + 0''^^-

30. It is now necessary to investigate a method of evaluating the

definite integral / ^{^x)dx.
*^ a

Let/ (.r) be a function of x such tliat y'(.i')= (^(a'). Then, since

, / \ • i.1 1- -i.- 1 £ i.T. • /(•^+^)—/(^) , 7 •

q){x) is the limiting value or the expression -^ { ^^-^ , when /^ is
h

indefinitely diminished, it follows that / (fi(x)Jx, regarded as the

limiting value of 2
~^"

''4>(x)Ji, = the limitiiia: value of

f(a + h) -/(«) +f(a + 'Ik) -Jin + h) +/(« + U) -f{a + 2/^ + . . .

+/(« + nh) -f{a + « -1/0

which =y(fir + tt^)—/(fl!). Now when h is indefinitely diminished,

nh^b— a, and the expression just given becomes /"(Zi) —/"(«).

Hence r\{x),lv^J\h) -/(«)
»y a

where /''(.r) = <^(.r).

The problem of evaluating the definite integral of <^(.'r) resolves

itself, therefore, into finding tlie function whose dificrential coefficient is

^{x), that is, into performing a process which is the converse of
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differe.'itiation. By reference to the object in view, the symbol / <f>(jii)dx

is used to denote the process in question, and tliis symbol is called an

Indefinite Integral of <f>(jc). The process is called integration.

31. Although it may be proved that every continuous function has an

indefinite integral, no infallible rules can be laid down for finding the

integral of any given function. The process rests ultimately on tlie

recognition of the function to be integrated (or of some simpler function

upon the integral of which the integral in question may be found to

depend), as the differential coefficient of some known function. Hence

the requisites for success in integration are (i) a knowledge of the

differential coefficients of various standard functions, (ii) a knowledge

of the artifices by which indefinite integrals may be resolved into others

of a simpler character.

32. It would be beyond the scope of this chapter, or the immediate

requii-ements of students of this work, to attempt to give a complete

list of fundamental integrals, or a resume of methods of reduction

Under the first head it will be sufficient to note the following results:

—

— . a:"=«.r"~'. Hence / .r"(J.r^ •

dx

d

-J-
• loge.V = -

ax X

(except ior n =^ — 1)

I a-''dx

ndx

In all the above results {x-\-c) may be substituted for or, since the

addition of a constant to x does not affect the form of the differential

coefficient. Similarly, a constant factor may be introduced j thus :

—

/ce^dx=-ce^. Aerain, since

d ^ du dv dw

dx dx t/vv ax

it follows that

/ (u + vi-iv+ . . .)dx = / IIdx + I vdx + I ivdx + . . .
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For example,

f<

= CfnX+ Oi TT + ^^2 V + • • • + "'»—TT •

-: S n + 1

33. Under the second heading mentioned above, two ai-tifices of

special utility may be mentioned. The first is the process of changing

the independent variable.

Let it be required to find / (fi(x)dx, and suppose that 4>(.^) can be

expressed in the form "^(ii), where ti=f(x), and that y'(.r)=%(?r), so

that '^'=xOi). Then f<^{.v)Jx= fylr(ic)^du= f^^dic.

If now , ^ can be recognized as the differential coefficient of some

known function of u, the integral can be expressed as a function of u

and hence of x.

For example, let <fi{x)^=C'^g'''^.

Put u= c-'', so that c'^Y''=^'f^i

and die= c^ log ^ c dx= 7^ log e c dx

.

Then P ^-, /* dio

/ c-'^o'^ dx = I ?^cr» • —i

J '^ J '' ti logf c

/*q'<'-dii 1

logcC logfClog^^

loge cloggy*

In this case an experienced integrator would at once recognize c-^q<'* as

the differential coefiicient (except for a constant factor) of g*^, and

would therefore save the trouble of going through the intermediate

process of putting c^=^u, but the artifice is one that may often be

usefully employed to reduce less easily recognized functions.

The second artifice to be noticed is that of integration hy parts, and

is obtained fi'om the well-known formula of the Differential Calculus

d(uv) dv du

dx dx dx
'
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wliich gives, on integration,

/dv ^
n div .

tt -r- ax = iiv — / V — fix.

ax %J ax

Hence the rule:—If the function to be integrated consists of two

factors, one of which (the second, say, for identification) is recognizable

as a differential coefficient, then the required integral = the product of

the first factor and the integral of tlie second, less the integral of the

product of the differential coefficient of the first factor and the integral

of the second.

For example, required / log^ dx.

/dfx)
los^X'-— dx. for the differential coefficient

clx

of X is 1. Hence by the formula

/_ ,
/* d\ogx ,iog^ad:=^log^— / x- —-^— ax

=zx\ogx—/ 1 .dx=x1ogx— x.

34. In infinitesimal analysis it is sometimes necessary to find the

differential coefficient of a Definite Integral.

d /"'

Let it be required to find - / (f)(x,c)dx, where a, J, and (f)(x, c)
dc J a

are all functions of c, the c being inserted in <^ so that its presence in

the function may be more clearly indicated.

Assume that

^ <fi{x,c)dxz=f{x,c),

Then / (f)(x,c)dx—ylr(h,c)—-\lr(a,c),

^"^
dcJa '^^^' ^'^'^^ " ~dc-~ - do—

= by Art. 25
g'v|r(5, c) cyjr(b, c) dh

dc dh dc

c->^{a, c) d-^{a, c) da

dc da dc
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iSTow
^ — = </j(.F, c).

it.V

00

c-v|r(a, c)
and —^ =6(r(, c)

.

ca

Also

2^\b,c) ?yjr{a,c) 9

= — / 4'(j^, c)iLv

Hence, finally.

If neither i nor « be a function of c, then

acj a J a
, cLv.
dc

35. It has been shown that the evaluation of a Definite Integral

depends, in general upon the determination of the Indefinite Integx'al.

Sometimes, however, the value of the Definite Integral between some

s])ecial limits can be found, when the Indefinite Integral cannot be

expressed in finite terms. For example, it may be shown that

r:
.1 o , V TT

When a required Definite Integral cannot be found, either b}'' the

determination of the Indefinite Integral or otherwise, it is necessary to

resort to some one of the' various methods of approximate integration.

These methods (which are of special importance in connection with the

subject of Life Contingencies, since most of the functions met with in

that subject do not admit of exact integration) consist either (i) in

replacing the given Integral by a nearly equivalent Integral of a simpler

character or by a series of such Integrals, or (ii) in expanding the given
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Integral in a series of equidistant values of the function to be integrated

(multiplied by a constant factor) and the successive ditl'erential

coeffieicnts of the function.

36. The general process adopted in the practical application of the

first of the above-mentioned methods of approximation may be indicated

by reference to the geometrical representation of a Definite Integral.

It has been shown in Art. 28 that the evaluation of the Definite

Integral / <^(.r)(^.r comes to the same thing as the determination of
*^ (t

the area contained by the base (^b— a), the two ordinatcs <f>{(i) and <^(^),

and the intercepted portion of the curve which represents the function

<^(.ir), Now this area will not be materially altered if the true curve be

replaced by another curve following approximately the same course.

Hence, if some infrf/rahJe function, ^^(.r) say, can be found which, when

graphically represented, Avill occupy nearly the same position as the

/**
curve representing (f)(^v)-, then the value of / -v|/-(a')(/.r will be

«^/ (!

approximately the same as that of / (ji(x)cLv. Now the function
«^ a

Co+ CiX+ C2a::-+ .... +c«_i.t"~' may be made to assume the same values

as <f>(x) for 11 values of oe [or, in other words, to pass through n points

on the curve representing <^(.r)], by assigning to Cq, Ci, &c. . . . c,i-i • • .

the values given by the simultaneous equations

Co+ Ci,Vi+ . . . +P„_i.r,«-i =cfi(xi) or f/i

Ca+ CiX-2+ . . . +c„-iA'.P'-^ =(b(x.) „ y.

U-\-c^Xn-\- . . . +f„_i.r;/''-^= ^(.r„) „ y„.

If, then, («— '2) equidistant ordinates be drawn to the carve

representing </)(.r) between ^(«) and <^(i), and Cq, fj, c-^. . .c^-x be

given the values determined b}' the equations

. / l— a\ f 7j-ny-^ r U~n\

Co
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tlien the curve representing the function Co + Cui'+ . . . +c„_i.r"-' will

coincide with that representing <^(a-) at each end of the section under,

consideration, and also at ?t— 2 intermediate points, and will clearly,

therefore, follow more or less the same course. Hence, approximately,

= c,(/>-a)+'^ (//-•_„-') + . . . + ':!i--J (i«_««).
-i n

Suppose, for example, that 7i be taken as 3, and for convenience let

£C be measured from the foot of the central ordinate, so that the required

integral becomes / cf>(x)(Lr, and let (fi( ~ ]i</>(0) and c/)f —^ j

be denoted by _y_i, yo and i/i. Then

b-a (Jj-aY-

Co =yo

and ^0+ ^1—:^ +^'2
,— =>/i

,
y\—y-\

,
2(y_i-2yo+ ?/i)

whence Cn^yo; ^i= 7 ; and c-.i=: ^,— -r

b—a '
{b— a)-

b—a

and the required integral

= approximately / (C(, + CiX+ c.2X-)(Jx

= c,{h-a)+ ^:,{b-ay={b-a) •

The geometrical interpretation of this result is that the area representing

the required integral is approximately equal to the rectangle contained

by the base (b— a) and the mean of the two end ordinates and four

times the central ordinate. This would, in general, be too rough an

approximation to be of any practical use. Better results may be

obtained by giving a larger value to n (^.e., b}' making the substituted

curve coincide with the true curve at a larger number of points), but if

71 be taken large enough to give a good result, the values of the constants

would become very complicated. It is more usual, therefore, to
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subdivide the whole range of integi-ation into comparatively short

sections, and to add the results obtained by approximately integrating

over each short section by a simple formula such as that given above.

Thus, let the integral / (f>(a')(I.v be represented by the area MA BN
in the annexed diagram. Suppose A B to be divided into 2n equal

y^nH

parts, and let the successive ordinates be denoted by yi, ,y2, y3, • • • y-m+x-

Then the area between the 1st and 3rd ordinates is approximately

."^^ ——^, the area between the 3rd and 5th is approximately
11 6

h — a ys-f Jyi + j/s

, and so on.
n G

Hence, approximately,

y.
<i>{x)dx= -^ [{yl + ^>^yi) + (i/3+ 4.'/, +;/..) +

+ {y2n-l-\ '^>J-ln-Vl/'in+l)']

h-n

An analytical proof of this formula will be found, with other formulas

of a similar nature, in the Text-Book, Part II, ch. xxiv, Arts. 49-50.

37. The object of the second of the methods of approximate

inteirration mentioned in Art. 35 is to establish a relation between the



Arts. 36-37.] APPKOITMATF, INTEGEATIOlff. 189

Definite Integral / (f>(s)<Lv and the Finite Sum h[(f){a) -f cft^a + Zt) + . . .

*^ a

For convenience, let Ux be written for <f>(x). Then

(where A?^p= ?/j,.+i— w.r, in accordance with the ordinary notation of the

Calculus of Finite Differences)

7t[(l + A)6-«-l]

B ut ( 1 + A J
'' i(.^.= u:,+u= (by Taylor's Theorem )

dx 2 ! rt.r-

(nij— iiu).

Hence

f/o; 2! (/.r^

1

«^x.

(1 + A)''-1
tClj

d h d-' h^ d^

dh^2 dh^
"^ ¥ 7/^3

"*"

7i //-^ f? _ h^ d'^

2
"^

l2 ^ "
720 ^3 +

«'6

•]'

Ti h* d-ih J>^ d _
2'^ 12 d7c 720 d^-^'^

Similarly, -^^^^^jz^ya

.-. 7l[Ua + t(a+h+ • • +^^i-;i]

= {jbJ "^-UJ "^-2^'''-''"^ + l2[-db--d^)

h^ /d^iOj _ d^iia\

~ 720 \db^ 'da^J
'

Now, when 7i is indefinitely diminished, /«[?/„+ ??«+/(+ • • • +Ub-7i]

assumes the limiting value / Uxdx, and the third and subsequent

terms on the right-hand side of the equation vanish, provided the series

be convergent. Hence the symbolical expression ( -77 j «6 —
( 1) '"^
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must be interpreted as denoting / w.rt/a', and the equation becomes

_ Jr" nr^Ub _ <Pll_a\

720 V dlj'^ dfi^ J+ •
•'

or

/ u,rdx=7l[7(a + ya+Ti+ • • • +?'6-;tJ+ r^
{Xfj—lfa)— T^ ( jT"

" ~^~
J

*"
720 V dh^ d(fi)^

'"

If the lower limit be taken a? 0, and the function vanish at the upper

limit, then

/ Uxdx=li[i(n-rt(h-\-n.iit-\- . . . ]— o ^^o+ TS"'o~ ^^^""'o+ • • •

v/ 2 12 720

where ii» and ?f"'o denote the results of putting :r=0 in the Hrst and

third dirterential coefficients of Ux-

If h be put = —
, then

m

/'"" I 111
/ iijx= - {ui^V^ -^ . . .)+ -- 2^0+ r^T^, .'*'o- ,^7^77-; ''"'o+ • • •

-/o ?« m m 2;m 12;;«- 720;?*'*

A similar demonstration of the formula for the case in which 7/= l, and

an alternative demonstration of the general formula, will be found in the

Text-Bool; Part 11.

It will be noted that the validity of all the formulas depends on the

assumption that h[iia-\-na+h+ • • . +?'6-/i] can be expanded in a

convergent series in powers of li.
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CHAPTER X.

Applications of the Calculus of Finite Differences and the

Infinitesimal Calculus.

1. For the purposes of the present chapter it will be convenient to

follow the general arrangement of the earlier part of the hook, and to

take up in order such of the subjects therein discussed, as may, with

advantage, be further investigated with the aid of Finite Differences or

the Differential and Integral Calculus.

2. In some problems in which interest is mvolved, either alone or in

conjunction wuth some other factor such as mortality, it is found

convenient to deal with infinitely short intervals of time. The word

continuous is used in this connection. Thus, an annuity payable by

infinitely small instalments at infinitely short intervals is called a

continuous annuity, and a Conversion Table giving the Single Premium,

or Premium per annum payable momently, corresponding to a given

continuous annuity-value, is said to be constructed according to the

Continuous MetJiod. The nominal rate of interest, convertible

momently, or force of interest, corresponding to a given effective rate

might, in a similar sense, be described as a continuous rate of interest.

Although such conceptions as those of a Force of Interest or a

Continuous Annuity do not admit of actual realization, approximations

to them may be found in practical finance. Consider, for instance, the

case of a company possessing large funds invested in numerous securities

upon wnich the interest becomes due at various dates through the

year, receiving income from various sources in daily instalments, and

frequently making new investments. In such a case, the income
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taken as a whole approximates to a continuous varying annuity and,

similarly, the fund as a whole may be regai-ded as accumulating

continuously at a continuous varying rate of interest.

The continuous method of analysis naturally suggests the use o£ the

Infinitesimal Calculus.

3. Suppose a unit of money to accumulate under the operation of a

force of interest—this force not being necessarily constant. Let f(t)

be the amount of the unit at the end of any time t, and let ht be the force

of interest operating at that precise moment. Then the amount of the

unit in {t-\-h) years will hef{t-\-h), and since S< is the nominal rate of

interest per unit per annum convertible momently, or, in other words,

the instantaneous rate of interest per unit per annum, at the precise

moment under consideration, it follows that iu the limit when

f(t+ h)=f{t) + hf{t)Zt

. T, fit +1') -At)
or 8,= Lt,=o

j^^^
.

Hence, if f{t) be a continuous function of t (in the sense defined in

Chapter IX, Art. 7),

1 ,1f{t) d log^CO

^^^m'-^ft^^dt- ••••(!)

This result expresses the fact that if the amount of 1 in f years can

be represented by a continuous function of t for all values of t within

given limits, then the force of interest operating at any time t within

these limits is equal to the differential coefficient of the Napierian

logarithm of the function.

In the form ht. = -^,— ,
the relation may be deduced directly

/(/) dt

from the definitions of a force of interest and a differential coefficient.

For, if/(/) be the amount of 1 in t years, then "^^
^

represent.s the

instantaneous rate of increase of f{t) as the independent variable passes

through the precise value t. Hence the force of interest 8<—which

represents the instantaneous rate of increase of /(if) per unit—is equal to

m dt
'

In general, Zt will be a continuous function of t.
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4. Since f(t) = l and logf/(^)=0 when ^=0, it follows from

e([uation (1) that

whence f(t)= e^o'"'' (2)

This equation expresses the fact that if the force of interest operating

at any time t within given limits can be represented by a continuous

function of t, Sf say, then the amount of a unit in any time t within

those limits will be e*' " ' .

Whether the rate of interest be constant or vai'iable, the present

value of 1 due ^ years hence is, on the ordinary assumptions of finance,

the reciprocal of the amount of 1 in ^ years. Hence, the present value

of 1 due t years hence will be given by the equation

1/^-'=^'-^^''"'
(3)

5. By means of formulas (2) and (3) the amount and present value

of 1 may be accurately calculated in any case in which 8t is an integrable

function of t. It will be convenient to take a few examples.

(a) Let 8^ be a constant, 8 say.

Then, since / S(/^=8^, it follows thsii f{t)= e^^ and [/(0]"'= «"*'

^
Also Al) = e^ iin^ [fO-)]~'= e~^

whence /(O = [/(!)]' and [/(0]-^=[/(l)]-'.

If y(l), the amount of 1 in a year, be denoted by (1-f ?'), the above

results take the form f(t)= (l+ iy; [/(0]~^= (H-*)"^- in fact, the

general formulas reproduce, as they should of course do, the results

obtained by ordinary algebraical methods for a uniform rate of interest.

(6) Let 8^=80?'*, where 80 and r are constants, 80 being the value of

St when ^=0. Then, since

•/ loger

f{t)= e^ol^"'^) . ^f(t)Y^= e^<^lr^^"'^
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Tliese results give the amount and present value of 1 under the

operation of a force of interest commencing at So and continuously

increasing or decreasing (according a? r is greater or less than 1) in

such a ratio that its values at successive equidistant times are in

geometric progression. The corresponding effective rates of interest

for successive years will be as follows :

—

1st year, . ./(I) — 1 or e •'^«''' —1
/•/QN 3„r(r— 1)

2nd „ •••'t^^-I - « ''^«"" -1

fi}i)
o„r=(r—1)

8rd „ -"fJ:-^ >' ^ '°^"" -1

and so on.

(e) Let 8;=8o— ''^ foi' '"ill values of t up to ??, and remain constant

and =8,8 for all values of t greater than n.

For values of t less than n

f{t) = e^\ =e -'

; [/(O] '= ^ - •

For values of t greater than «, the integration must be divided into

two parts, since 8^ is not represented by a single continuous function.

Thus

{i^-rmi+ I Sndt S^n- -^ +(«-n)«.

J ^. y
J n =ze

and, similarly,

[/(O] '=^

<^ ^

Since 8o— r«= 8,,, whence r=. , the above results ma}' be
n

written in the form

t<n f{t)= e •''
; [/(/)] '= ^

t>n f(f)=e- ; 'l/(OJ — <? -

These formulas give the amount and present value of 1 under the

operation of a force of interest commencing at So, decreasing by equal

decrements in equal times to Bn, and thereafter remaining constant.

If /'i, I'i, ?3, ... be the corresponding effective rates of interest for

the 1st, 2nd, .3rd, &c., years, and w be < n, then
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/(I)

whence 1+ 4=6 '^ (l + 'i)» ^"'1 generally, if m be <n

l + /„,= e '' (1 + ?•«_!)

that is, since e " " is independent of t.

It ai)peai*s, therefore, that the assumption that ^t is of the form

(So— »'0 leads to a relation between the effective rates of successive

jears similar to that assumed in the second paragraph of Art. 33, Chap. I.

Since rz=-(8o-8,,) = -lng.(l-/L-),'^iai + ''. = ^'""i^'"~'"^='^'""'^""''^'~'"^
n

= {l — ky^e^o, it follows that the force of interest at any time t correspond-

ing to the decreasing effective rates 1 + /,, (1— fc)(l + Zi), &c., would be

^o+/loga(l-/0, where 8o=loge(l + ii) - Alog^(l-A-).

As an example of the application of the formulas, let it be required

to find the amounts of 1 in 10 and 40 years resj^eetively, on the

assumption that the force of interest falls by equal decrements in 20

years from the force corresponding to an effective rate of 3 per-cent to

that corresponding to 2 per-cent, and thereafter remains constant.

The amount of 1 in 10 years

=:/(IO)=^^0S„-,V,(5«-«.„)xl00__g7JS„ + 2JSjo

= (10,3)'^ (102)-'5= 1-31153.

The amount of 1 in 'JO A'cars

=/(40)= 6-^«(«"-«^o)+40S,o=(l-03)'».(l-02)3o

= 2-43482.

o 2
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6. If the amount of 1 in t years bo denoted, for all values of t from

to m, hy f(t), tiien

'^^: = [/(i)]- + [/(2)]-+ . .
. +[/(«0]-'

Hence, if ^; be made infinitely great,

*^=//("0-L/W]-^^^ W
c/

and flm= / [/(O]-'^' (5)
'^^

These definite integrals give, in general terms, the amount and present

value of a continuous annuity of 1 per annum; but, in order that they

rt

may be exactly evaluated, [/(O]"'—^^"^^ ^s» ^ - o
" —must be an

integrable function of f. Their application may be illustrated by an

investigation of the cases in which Si; has the special values assigned to it

in the examples of Art, 5. Since Sn.^=f(j»i) -amy, it will be sufficient to

consider the values of dm •

(a) Let St be a constant, S say.

Then [/(0]"' = ^"*'' ••^"d

«m, = y e-^'dt = g ,

a result which agrees, as it should do, with that obtained by ordinary

ab'cbra, on the assumption of a uniform rate of interest.

(b) Let 8<=8oK

^ (r'-l)

Then [/(0]"'=^ '''^'""

/<*m. _ Jo (r'-l)
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The Jofinito integral thus obtained for «„7] cannot be evabiatecl in a

finite form, but by expansion ot" the ex])onential and integration of the

euccessive terms its value may be expressed in the intinite series

r
\
mloSe^'—T- (' — 1)+ i ^ ,, .

-

hserl •='
\0Se>' ^^\\0<rerJ 2.2!

.3 ySlll ][

+ ]dogel'J 3.3!

or, if 7c be written for — ,
,

loger

-V Lit
+^^"^^-'""^+ 2721^^-'^ ^"^+3:3!^^-'^^"^+

• • J

In a practical case So niiglit be the force of interest corresponding to

i= -035, and r miglit be =-99.3, whiL-li would give Jc^Q'Sl
; y ='00501;

ke-''
and -^;— :='207. It will be seen, tliorefore, that although the series

0(1

given above is in all cases ultimately convergent tlie number of terms

that would have to be calculated in any practical case would be so large

as to be prohibitive. It would be necessary, therefore, to em])loy

some formula of approximate integration such as that given in Art. 36

of Chap. IX— the range of integration being divided into sections

selected in any given case with reference to the actual numerical value

of m.

(c) Let S^^So— r/ for all values of t up to n, and remain constant,

and =8« for all greater values of t.

Then, if m be < n,

am\= I <? - at.
*J

Tlie definite integral may be exjjressed in the ultimately convergent

series

S"

where ^"=,7",) but, in this case, as in that of the series obtained in (Z*),

the number of terms to be calculated would, for ]iractical values of So

and r, be prohibitive. Hence, in this case also, it would be necessary to

employ a formula of approximate integration.
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If in be >n, then obviously

*y On

and «m=e ^ •/ * ^^H j;
•

<y d,j

7. The foregoing investigations with reference to varying rates of

interest might, of course, be extended to any problem in Compound

Interest, but the subject is not of sufficient practical importance to call

for further exemplification. In the remainder of the chapter the rate of

interest involved in any given problem will be assumed to be constant.

8. Tlie Calculus of Finite Differences may be conveniently employed,

as stated in Chap. Ill, Art. 35, to obtain general formulas for the

amount and present value of a varying annuity.

Let 111, "2> ?'3 • • • ^*» be the successive payments of a varying annuity

payable annually for n years. It may be assumed, without loss of

generality, that ii^ . if.j . . . Un are the tirst n terms of the series

«i, Mo . . . Un, 2«K + i, 11,1+2 ' , where 2in+\, iin+2, &'^; follow the same

law of formation as ui, u, . . . ?<,». Then with the ordinary notation of

Finite Differences

1— t-"(l + A)» l-y»(H-A)»

= -fl+-.- + -:7 + . . .)(u^-v"l'n + l^

Hence, if {ya)—\ and (v6')„i denote the present value and amount of the

given annuity,

(va)„,= -. +
-:,

_^A^«^«A^^^_^
^g^

(l + 0""I-""^-I ,
(1 + /)"Am, — A/^„ + ,

and (vi),: ;= : r

. . . . (7)
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If (y(i)a> denote the present value of a varying perpetuity of" which

the successive payments are «<i, u<>, . . . , it follows from the foregoing

investigation, since v"^ in that ease vanishes, that

w, Az<i A-'ki
(va)x= -r + -rp + -—- -h . . .

Alternative expressions for (ya^-^ maybe obtained in the following way :

By successive differentiation of l + t' + t'-+ z;^4- . . . -t-f"""'

«?'-a-i r+1! r+ 2! , ?^-l !

dV ' 1! 2! n-r-l\

Similarly, by successive differentiation of v-j'V''+ . . . +v'^~'\

d dv d d
since - = .—

. — = _t-—

,

di ill civ av

d'-a^^z^. , ,...r . .. .. •'•+!!...., ^^-11

,.r
=(-!)

. , ^

.

^^ - 1 : -]

r !
!•'• + ' -t-

——- e^''+"^+ . . . + i'»
1! w-r-1! J

Now

(v«)- = 2v?i + i'2(L + A)«,-h . . . +i-'-+'(l + A)'-Wi+ . . . +r"(l + A)«-'wi

and the coelHcient of A'"??i in this expression is

^ • «— r— 1 ! r !

Hence

(v«)-rxra-7^, + r2-^'Ae/,+ . . . + —y --^IA'-«i+ .

. . +f'»A'»-'wi .... (8)

at r! «/'

-f-f«A'»-'wi. ... (9)

These formulas may obviously be expressed in ordinary algebraical form

by substitution of the values of ?'^ «&o., as obtained by differentiating
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1 — t'""*

&c., but the resulting expressions would be too complicated to
i

be of practical use except in the case of a varying annuity of which the

successive payments form a rational algebraic series of a low order, so

that all the differences after, say, the first or second vanish. In

the case of such an annuity formula (9) might also be employed to

obtain an approximate value by substitutmg tor —p— and —-~- their

approximate values
^J^

(«I,ti]— ^L^n) and ^2 («n-2 — 2a,;T2i + o^i).

9. It has been implicitly assumed, in obtaining formulas (0)

and (7). that Wi, ti2 . . . u„ follow some definite law. If this is

not the case. ?/„^i and its differences can be calculated on the

assumption that nth. differences vanish. In theory, therefore, the

formulas are of general application. But the utility of these

formulas, as of formulas (8) aud (9), is practically limited to those

cases in which the differences of the successive payments vanish after

the first few orders, that is, to those cases in which ut is a rational

algebraic function of ^ of a low order. In other cases (unless the series

for (v«);^i could be summed algebraically, as, for example, in the case of

an annuity of which the successive payments are in Geometric Progres-

sion), it would be best to calculate the separate values of the liaj'ments

and to add the results. Even if the higher differences of the payments

were very small, it would not necessarily be safe to neglect them for the

purpose of obtaining an approximate result, because the values of the

expressions by which they have to be inultiidied increase veiy rajiidly.

10. The following examples illustrate the application of the formulas

of Art. 8 :—

(a) Required the presenV value ut rate i of an annuity of which the

payments increase in arithmetic progression. Let p be the first payment,

g the annual increment, and a the i^resent value of the first n

payments. Here Ui=p, Aui:=q, Un+i=2) + nq, Aw«+,= y, and the higher

differences vanish. Hence by formula (0)

p— v^(p + n(j) q— v^'-Q a-\— 111-"'

I f ' ^ t

Or by formula (8), since

dv dv 1— V i — v {1 — v)^ iv'^ io'^
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ci=pca,T + qc- + ., \=pa-i + q
—

.

\_ iv- ii-_\ I

The riroseiit value of the periietuitv is obviousslv -. 4- - .

' ' '
' "

I i-

The results have already been obtained by ordinary algebraical methods

(Chap. Ill, Art. 28).

(£) Required the present value at rate i of an »-year annuity uf

which the successive annual payments are 1^, 2'', 3^ . . . n^.

Here Un->r\={n-\-\y.

A»„ + ,= (« + 2):'-(« + l)^=8;i2+ 9;< + 7.

A2,/„ + ,= 3(M^12-«-') + 9= 0(;^ + 2).

A3«„+i= 6(/7+l— h)=6.

Hence by fonnula (G)

I— (?i + l)3f« 7-(3;i-+ 9«4-7)<;» 12— 6(«+ 2)r» na--f'»)-=
1

+ ,. +
J.

+^—
Or by formula (9), since A?/i= 7; A-«i= 12 ; and A%i= 6,

'=""'-'
-IT ^""-Ti^ dp-

(c) The first tliree ])ayments of an w-year annuity are 18, 28, -10.

On the assumption that the ^th payment is a rational algebraic function

of t of the 2nd degree, find the present value of the annuity at rate i.

Formula (9) gives at once

dfi;r~\, d-a--r,,

«=ls.^, -io-^' + -y^-'
a I di-

= 18«;:,+ +
2

To employ formula (6) it would be necessary to determine, in the first

instance, w«+i, A«,j+i, and \''~Un+i- This can readily be done; for

«(«— !)
w« + i= ''i + "-^"iH ^ --^ «i

= 18 + 10»+ «(«-l) = «-+ 9" + lS

A?/„+i= ?/„+o— ?f,j+i= 2?? + 10

A'-'«,i+i= A?r„+o— A?/»+,= 2
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18-(w2+9n+ 18)i-«
,
10-(2« + 10)y'»

,
2(l-u«)

Hence a = -.
1 h —^^—-

—

-

.

t I- t^

11. If B denote the present value at rate i of any series of annual

payments, iii, Uo, Va • • • I'ni and (U^) denote the present value at the

same rate of tlie series ?^i, 2//.>, S113 . . . nun, tlien tlu; value of (IB) can

be very simply deduced from tliat of B by moans of the Differential

Calculus.

t^or, since — = —v-— ,

lit itv

dB ^ d .

(li (li-
'

= - v-{iii + 2ii.,v+ . . . +«//„?•«-'}

=.-..(113).

rJT*

Hence (7r>) = -(l + /) -^ (10)

For example, since the successive payments of the ordinary increasing

annuity are 1, 2, 3 . . .

/-, •. "(1 + -"+'•'+ (1 + o~" -1
=-a+'j

^,

and (la)^ = -(l + 0~.-]
ill I

— L+! _ 1 \
i- ~ i i^

as in Chap. Til, Art. 21).

12. In the case of a continuous series of paym'^nts, if B denote the

vUiidt and (115) that of / v'tuidt^ then, as iii the case
»^

of the annuity payable annually, since
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or, since

j/ _ ^ ^ _ _J_ d

di~~dl'J8~T+'iJ8'

(^^)=-f 01)

in wliic'h form the relation might have been deduced directly from the

definite integrals for J> and (IB), since v^=ze-^^.

As an example of the application of formula (11), let it be required

to find, on the assumption of a uniform distribution of deaths, the value

at the beginning of the year of death of the proportion payable at the

moment of death under a complete annuity.

The required value, being = / ivhJt,J

—_^ /^^^ _^T|__</ \— c-^ — g^-s_^-o_(_i

6-

•1-8 ^-

1^:; or V —

as in Text-Book, Part 11, Chap. XI, Art. 5.

Tliis result covdd, of course, have been obtained dii-ectly by integration

by parts.

13. It has been shown in Arts. G-11, of Chap. VI. that a good

approximation to the rate of interest corresponding to a given value of

an annuity or redeemable security may be obtained bj' substituting i' + p

for i in the algebraical expression for the value of the annuitv or

security—where i' is a rate which very nearly gives the requisite value

—

expanding in powers of p, and taking the first or second approximation

to the value of p. The method may be developed more simply and

generally by the use of the Differential Calculus.

For let 11 be the given value of any function of an unknown rate of

interest i ; and suppose that it has been found by trial (or by reference

to the Tables, if the function is one of which the values have been

tabulated for various values of «') that at rate i' the value of the function

is w'—a value differing from tt by a small quantity only—and let

i=i'+ p, so that the given function is a function of i'+ p. Then bv

Taylor's Theorem,

dtl' p2 J2„'
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As a general rule, the successive terms in the expansion decrease with

considerable rapidity, so that a fairly close approxmation to p may be

II— u
obtained bv nesflectinfr all terms after the second, whence p=:

—

y-r- and

ITT

i=i'-\ j-j- approximately. Formula (2) of Chap. VI, and tlie

Til

corresponding formula (on page 110) for the redeemable security', may

of course be deduced from this result by differentiating rt',7] and

C-|-*, (C— K') respectively. But a more practical method of applying

the result is to substitute for -Tr,it'5 approximate value -— («*'+''— it'' ~'').

This leads to the convenient formula

i= t'+ h
^ , ..

, rr-r, (12)

A closer approximation could be obtained by retaining the term in p^,

p d-ii ^ p-r/hi
-, Xpifor -—7

2 (li-^
"

2 iU'

, , ., ,. p il-H „ n-<Pll,' .
, , . • •

and substituting - —^ Xpilor — -—^, where pi is the hrst approximation

to the value of p,

whence t= i'-\-

du' 1 iihc''

7/7 + 2^^'
di'^

Since —^ = -(»''+'' — 2«' + ?^''"'') iipproximately
di - If

this crives

i=i'+h, -^-^ . .(13).
1

\v/-

Formula (12) is, in effoct, a first diffi'ri'uce interpolation formula,

altliough obtained by an indirect method. For it may be written in the

- u— id i—i'... . . .
,lorm —^—, -7—, = —n-, wbicii merely gives expression to tiie an])roxi-

mately correct assumption—for comparatively small differences of ?

—

that the difference between the values of w corresponding to the rates

i and i' bears the same proportion to the diflference between the values



METHOD OF INTERPOLATION. 205

corres])oiuliiig to the rates /' -f h and i'— A as the difference between i and i'

bears to that betvrcen i' -^h and ^'— h. This is an obvious generalisation

of the method of first-ditference interpohition enij)loyed in Arts. 13-17 of

Chap. VI. It wdl be usetid to consider in the following artic-les some

further practical ap})lications of the method of interpolation to the

problem of approxiniatmg to an unknown rate of interest.

14. The general theory of interpolation may be illustrated b}' the

annexed diagram, in which P_2N_2, P_iN_i, &c., represent the values

of a continuous function corresponding to the values 0N_2, ON_i, &c.,

of the variable, and PX represents an unknown value corresponding to

a Ljiven value ON of the variable:

N2 Ns

The ordinary method of first-difference interpolation, as exemi)lificd in

Arts. 13-17 of Chap. VI, gives as an approximation to the required

interpolated value—P'N, where P' is the point in which the ordinate at

N cuts the straight line joining Pq to Pj. But, unless the function

presents singularities in the neighbourhood of P (which will not be the

case with functions of the class under consideration in this book), it is

clear that a better approximation will be obtained by taking the ordinate

at N of a curve drawn through the points Po, Pi, and one or more of the

points P_i P.j, &c. This curve will not coincide exactly with the curve

representing the function— unless the latter is a rational algebraical

function of a lower degree than oi, where the curve is drawn through n

points—but it may be expected to depart comparatively little from it

throughout the range between the two end points. For all practical

purposes it is sufficient to draw the curve through three—or at the most

four—points in the immediate neighbourhood of P ; if (as in the

diagram) N lies between Nq and Ni and is nearer to No, the best points
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to select will obviously be P_,, V„, ri,;iiul (if a fourth point be taken) 1*2-

Fur the ])urposo of deterniining the approxinuite rate at which a

compouiul interest function has a ejiven value m, the method may be

applied either direc/Ii/ by making / the ordinate of the curve and it the

abscissa—that is, by regarding / as a function of u—or indirectly b3'

making u the ordinate and i the abscissa—that is b}' regarding u as a

function of i.

15. Consider, first, the direct application of the method, and suppose

that it is required to obtain an interpolated value of / from three given

values of the function, viz., from the values w_i. lU) and Ui corresponding

to rates /_i, /o< ^^^ h- 'i'"- general equation to tlie curve drawn tlu'ougli

three points is an algebraical function of tlie second degree. It may be

assumed iheivfore, that /=:A + B?/ + C»-

und the values of A, B, and C will be determined by the given values

z_i==A -i-B«_i + Ci<-_i

?o=A+ I»"o+C//o"

ii = A + \hi\-\- Vu{-.

The elimination of A, B, and C from these equations leads to the result

(m_i— Wo)("-i— "i) ("o— «^i)(«'o— «-i) {,ui— u-i){"i— i'u)

If the given values of the function were equi-different—that is, if

2/q—u_] were =«i — ;/o~this result would reduce to the ordinary second

central difference formula for i in terms of u. But it is not usual to

tabulate tlie values of i corresponding to given values of compound

interest functions. In practice, the values of ic will be tabulated (or

will be able to be readily calculated from the tabulated values of simpler

functions) for given values of z, so that the available data will be the

values M_i, «0) "i corresponding to the consecutive equi-different rates of

interest ia— h, ?o, ?o + ^'- 1" these circvunstances the expression for i will

be found, on substitution of /q— // and io-\-h for i_, and z'j, respectively,

and on simplification, to take the form

, w— Wo r»— "-\ V— Vx ~\

«'i
— "-iL"i — "o "o— "-iJ

"The corresponding general formula, based on ii given values, is known as
Lagrange's Interpolation formula, and can be deduced at once (when its form is

knovvn^ by assuming that i = 2A,(u — tfi) . . . (u — ji,.-i) (w — Jt,-+i) . . . {u — iin) and
pulling n = u»,Ui, &Q., successively to determine tlic constants.— See Text Book,
Tart II, p. 438.
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16, Consider next the indirect application of the method, and

suppose that the data are the values «_i, ?/„, Xi, i/o corresponding to

the rates io— ^*> ^i '0+^1 and io+ 2h. It might be assumed tliat

u= A+lii+Ci'^+ jyp {or A+Bi+Ci-, if only three values are used), and

the constants could be determined as in the preceding Article. But, as

the rates i\,— //, Iq, &.C., are equi-different it will be si\npler to use Finite

Differences.

Let i (the interpolated rate to be found) z=/Q-\-p. Suppose that an

interpolation based on the three values «_i, ^o, ''i is required. Then

differences above the second must be neglected, and with the notation of

ordinary central differences

, P ,
h r

u= tio+ fro- + - .-

.

h 2 k-

Hence as a first approximation p= h , and
f'o

i= iQ-\-h (15)

and/ as a second approximation (obtained by substitution of h p for
"0

p~ in the central difference formula)

i= io+ Jt —^ (16)

It will be readily seen that Formulas (15) and (16) are identical with

Formula (12) and (13).

For an interpolation based on the/b^r values

—

ii-i, Uo, Ui, u^— it will

be more convenient to use central differences relative to the interval

between Wo and ?o, instead of to e/o. If ay, /io, 70, denote the successive

differences, so that ao=A?^o; /5o= :^'A'(«-i -t- z'o) ;
and yo= A^«_,, then,

since differences above the third must be neglected

This gives, as a llrst approximation,

o-o—hpo
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and as a second (il' -y^— wliicli will always be relatively insignificant—be
4

neglected).
,

^^^"+ ^-./j ^ B
^^^^

«o— iPlI Po

u — Uq 2{ao— ^f3o)

It may be observed that the fonnulas ot this Article liave been obtained

on the assumption that the given value u is between Hq (the nearest

tabulated or calculated value) and Ui, whereas it may, in practice, be

found to be between i/q und i/_i. The argument, however, holds equally

whether h is positive or negative, so that the i'ormulas may be applied to

a case in which u is between Wq and u-i by merely reversing the order of

the w's.

17. For purposes of illustration and comparison, it will be useful to

apply the formulas of the preceding Articles to the annuity and redeem-

able security taken as examples in Chap. VI.

(rt) In the case of the annuit}- the given value is - =:-05. The

nearest value to this in 1'able V is the 3 ptr-cent value— 051019—and

as in this Table the values are only given for differences of one-half per-

cent in the rate of interest above 2| per-cent, the best available values

for interpolation are the 3|, 3, 2| and 2 per-cent values—taken in this

order, because the given value is between the 3 and 2^ per-cent values.

The successive values and their ditfereuces are as follows:

1

Here
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By lormula (13) or (IG)

By formula (14')

,1019/4371 2222

'='>^^-««'(i5«r)lS2a-^.Sl52J="-'^^'

By t'onnula (17)

fc.O;,-.005^?15L» =.028150
•003297

and, finally, by formula (18)

i= 03- -005
^^^

~ = -028446.

1019 3297

It will be seen that formulas (13) and (IS) give the rate correctly to

the sixth place of decimals, and that the two simpler formulas— (12) and

(17)— give results ditfering from the true rate by less than -00001—that

is, by less than one farthing in the rate per-cent. The latter are, there-

fore, sufficiently accurate for any practical purpose. Formula (12) is the

more convenient, as it involves three values only.

(6) In the case of the 4<^ per-cent debenture redeemable in 25 years at

112^, the given value is 120, and the values of the debenture calculated

at 1^, li, 2 and 2^ per-cent half-yearly from the expression

]12j«^"-i-2^«g^i are, with their successive differences, as follows :

A2

1-045

-930

Here 7/ =0025; ??= 120; ?/„= 121-821

^0= -9-8435; /;o= 1-045

«„= -9-321; ^o='9875

Hence by formula (12)

1-821

i
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By fornnila (13) or (10)

1-821 19-687

and by formula (IS)

'=°i'^+"°-^ 9-81475' -asTs^"^^""^-

1-821 19-6295

The last of these approximations is correct to the sixth place, but

formula (12) again gives an error of less than one farthing in the annual

rate per-cent.

It may be noted, however, that the example is one that is rather

favourable for the application of an ordinary central difference formula,

because the true rate differs comparatively little from the central rate of

the three on which the interpolation is based. If the true rate had been

•01875—to take an extreme case—formula (12) would liave given

•018715, which involves an error of nearly 2r/. in the annual rate per-cent.

In this case formula (IS)—which is well adapted to a rate about midway

between two consecutive values—gives 018719.
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Table I.

Amount (if I; viz., (l+i)".

n

I
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Table I.

Amomit of I; vi::., (1+/)".

n

I
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Table 1 1.

Present Value of I : viz., v^.

n
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Taule II.

Present Value of l ; viz., v"

n



Tablk III.

Amount of I per Annum: viz., s^.

215

n
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Tablic III.

Amount of I j>e7' Annum: viz., s,-;

71



Table IV.

Present Value of i per Annum : viz., a^.

217

11
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Table IV.

Present Value of i per Annum: viz., a^,

1

n
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Table V.

Annuity that I ivill purchase : viz., ( «,;]
)~\

n
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Table V.

Annuity that i will jmrcltase : viz., ( a^ )~^

[

n

I



22t
Table YI.

Comporind Interest Constants.

i
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